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[bookmark: _Toc233101609]We present the 2023 USGS time-independent earthquake rupture forecast for the conterminous U.S. (CONUS-ERF-TI-2023), which gives authoritative estimates of the magnitude, location, and time-averaged frequency of potentially damaging earthquakes throughout the region.  In addition to updating virtually all model components, a major focus has been to provide a better representation of epistemic uncertainties.  For example, we have improved the representation of multi-fault ruptures, both in terms of allowing more and less fault connectivity than in previous models, and in sweeping over a broader a broader range of viable models.  An unprecedented level of diagnostic information has been provided for assessing the model and the development was overseen by a 20-member participatory review panel.  While we believe the new model represents best available science, we also discuss potential model limitations, including the applicability of logic-tree branch weights with respect different types of hazard and risk metrics.  Future improvements are also discussed, with deformation model enhancements being particularly worthy of pursuit, as well as better representation of sampling errors in the gridded seismicity components. We also intend to add time-dependent components as soon as possible.
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	This report documents the USGS 2023 time-independent earthquake rupture forecast for the conterminous U.S. (CONUS-ERF-TI-2023).  An earthquake rupture forecast (ERF) gives the probability of all possible damaging earthquakes in a region and over a specified timespan (or a suite of synthetic catalogs for such events), and by “all” we mean at some level of discretization that is deemed adequate for hazard and risk quantification.  An ERF is one of two main model components used in seismic hazard assessment, with the other being a ground-motion model (GMM), which gives an estimate of the shaking produced by each rupture.     Regarding nomenclature, ERFs are also referred to as a “seismic source model” or “seismic source characterization”, especially in time-independent analyses. We avoid these names due to ambiguity with studies of individual observed earthquakes (e.g., the “source model” for the Northridge earthquake).  Furthermore “ERF” better captures the forecasting nature of the model, especially for the time-dependent extensions we intend to deploy later.  Including “Rupture” in the name removes the suggestion that we are talking about ground motion (earthquake is synonymous with earth-shake).  In short, “ERF” seems more precise and less ambiguous, especially for non-experts.  
	The work presented here represents an update of the models utilized in the 2018 USGS National Seismic Hazard Model (NSHM) (Petersen et al., 2020), which largely utilized unmodified ERF components from the 2014 NSHM (Petersen et al., 2015); we refer to these previous collective efforts as “NSHM14/18” hereafter.  Except where noted, all magnitudes (M) referenced here represent moment magnitude.
[bookmark: _Toc127506019]Broader Goals

The following goals are currently influencing the development of USGS ERFs:
1) A more comprehensive representation of epistemic uncertainties.  A forecast should now be deemed highly questionable without epistemic uncertainty estimates.  The fact that these still grow with each new model indicates that they have not yet been fully quantified.  We want to get to where these uncertainties are reduced by new scientific studies.
2) More uniformity in model assumptions and methodologies across regions.
3) More operationalization of model component development, which will improve reproducibility, testability, modifiability (e.g., consultants performing site-specific analyses), and the speed at which we roll out future improvements.  “Operationalization” here means a more “push button” environment where routine processing is moved from scientists to computers (freeing the former to focus on scientific improvements).
4) Impose simplicity wherever we can, even if it means abandoning long-cherished assumptions or techniques.  The main motive here is understandability with respect to reviewers, practitioners, and getting the next generation of contributors up to speed (plus the psychological fact that people tend to dislike what they cannot understand).  The rationalization for simplicity is that a less “realistic” model can actually be more useful (e.g., less computationally demanding); we want to find the right balance, which is a challenge because this will vary among applications.
5) De-regionalize model component developments.  That is, have the same group of scientists develop like types of components for all regions simultaneously rather than having separate “working groups” doing things independently.   This is more efficient and contributes to uniformity.
6) Deploy models that are extensible with respect to time dependencies, including elastic rebound, spatiotemporal clustering, swarms, and induced seismicity.
7) Provide more complete documentation (i.e., minimize the need to read previous publications for implementation details).

	All the above goals are aimed at increasing the rate at which we can roll out even more useful models, all the while doing more with less.  These goals are admittedly aspirational, or perhaps even utopian, but we nonetheless believe they are both worthy of pursuit and that we have at least incrementally manifested them here.  Where we have come up short often reflects time constraints, which we intend to address as we evolve into maintaining a living “research model” or “forecasting enterprise”, from which versions can be time stamped for specific official uses (e.g., by building code committees or for pricing insurance products).
	Scientifically, or in terms of improving model realisticness, the main improvement here is representing possible multifault ruptures on explicitly modeled faults.  This is not only with respect to allowing more such ruptures throughout the Western U.S., but alternatively with respect to imposing more segmentation than was applied previously (in the 3rd Uniform California Earthquake Rupture Forecast; UCERF3; Field et al., 2014); this improvement reflects the lively scientific debate over the prevalence of multifault ruptures (Schwartz, 2018; Page, 2021).
[bookmark: _Toc127506020]Model Elements 

	Given the system-level nature of ERF development, a modularized construction is critical to keep things manageable and to enable different groups of scientists to focus within their respective areas of expertise.  The top-level model components utilized here include: 1) Fault Model(s); 2) Deformation Model(s); 3) Earthquake Rate Model(s); and 4) Probability Model(s).  These components are depicted and defined further in Figure 1, which also shows how multi-cycle physics-based simulators can be substituted for the earthquake rate and probability components.  The ERFs presented here are essentially equivalent to Earthquake Rate Models due to their time-independence (Poisson probabilities, with some possible exceptions as noted below).  Adding elastic rebound and spatiotemporal clustering time dependencies will come later.
	The earthquake rate models developed here are composed of one or more of the following types of earthquake sources:

1) Fault System Solution
2) Classic Fault Source
3) Fault Zone Source
4) Gridded Seismicity

A detailed definition of each of these is given below (just before describing the specific implementations for 2023), but we emphasize here that even the seemingly most complex one (the Fault System Solution) is conceptually quite simple and generalized to include everything from classic single-fault models (Field et al, 2020a) to representing results from multi-cycle physics-based simulators (e.g., Milner et al. (2021)).
	These four earthquake source types, as well as the main components depicted in Figure 1, are influenced by several sub-components and/or analyses.  A complete list or these for our 2023 ERF is given in Table 1 (this link for now, and be sure to click the “ERF Components” tab at the bottom), each of which represents either a separate publication, an appendix of this report, or a contribution made to a section of this manuscript. We will reference each of these components in the detailed explanations below, but here we can generalize the types of components as follows (broken out by discipline):  
· Earthquake Geology:
· Finite fault models & fault zones
· Fault slip rates and average slip estimates at points on faults
· Paleoseismically inferred recurrence intervals (and probability of missed events) at points on faults
· Tectonic Geodesy:
· GPS data vectors
· Creep inferences
· “Ghost” transient (viscoelastic) corrections
· Inferred fault slip rates (consistent with both geologic & geodetic data)
· Inferred off-fault deformation estimates
· Statistical Seismology
· Earthquake catalog development & curation
· Long-term spatial probability density function (PDF) of seismicity rates via declustering and smoothing
· Regional MFD inference (or total rate and b-value)
· Hypocentral depth and focal mechanism distributions
· Earthquake Physics
· Scaling relationships (area, length, and average slip vs magnitude)
· Multi-fault rupture plausibility model (defining ruptures with a non-zero likelihood)
· Distance-dependent segmentation (larger jumps less probable)

IS THE ABOVE LIST HELPFUL (IT'S NOT CRITICAL)?
	In addition to these disciplinary components and activities, Table 1 (this link for now, and be sure to click the “ERF Components” tab at the bottom) also lists those related to ERF construction, with the greatest effort involving the inversion-based fault system solutions (with respect to methodology development, compute time, and analysis of results).  Other efforts involve construction and/or updating other source models, including that for the Cascadia subduction zone, and deciding how to handle the influence of creep, aftershocks, and avoiding double counting of earthquakes when sources are combined.  The vast majority of ERF components have been revamped for this model, and all were given due consideration.

[bookmark: _Toc127506021]Epistemic Uncertainties

	Again, a primary goal is a more thorough and uniform representation of epistemic uncertainties, and to this end we employ the standard practice of utilizing logic trees (Figure 2).  A persistent challenge is how to handle correlation, or lack thereof, between branches.  When uncertainties are both numerous and uncorrelated, we will quickly run into the computational impossibility of systematically traversing all possible branches.  As an example, our 2018 model has three branches for the dip of faults in the Western U.S. (outside California).  The simplest approach is to assume perfect correlation across the region (all faults have the same dip deviation on a given branch), leading to 3 branches.  If the dips are uncorrelated, and say we have 100 faults, we end up with 1 million branches for this uncertainty alone. In this case we could switch to Monte Carlo sampling of branches.  However, dips are likely somewhat correlated for nearby faults (e.g., adjacent sections of a given fault), but uncorrelated over greater distances.  In this case we would need to determine the correlation structure and Monte Carlo sample accordingly, which isn’t currently feasible.
	We will see that this conundrum potentially applies to multiple uncertainties, including the newly added fault-section b-value.  Fortunately, this is less of a concern for single-site hazard curves (which is what the USGS hazard maps are composed of); that is, hazard at a single site is generally dominated by nearby faults, and correlation among nearby faults seems more plausible.  The bigger question is how assuming correlation impacts spatially distributed studies (e.g., portfolio risk analyses), a concern that was previously articulated in the context of adding epistemic uncertainties to GMMs (Field et al., 2020b).  At the very least, one should consider modifying the weights assigned to outlier branches in spatially distributed analyses because perfectly correlation is less likely, otherwise one runs the risk of exaggerating the width of inferred epistemic uncertainties.
[bookmark: _Toc127506022]Review Process and Consensus Building 

	It has become a practical impossibility for any one individual to fully understand all aspects of a state-of-the-art ERF.  This raises a significant risk that an explicit or implicit assumption in one ERF component might be inconsistent with that in another, which is why a broad, thorough review is critical.
Table 1 (this link for now, and be sure to click the “ERF Components” tab at the bottom) represents the discrete elements that have been reviewed, each of which has also been presented and discussed at one or more workshops (most of which were virtual).  In addition, the overall model and development process has been overseen by a 20-member participatory review panel, chaired by Thomas Jordan, which involved 8 different open briefings with more than 50 participants at each (presentations and video recordings available here), each of which was also followed by an executive session of the review panel.
	Model results were also scrutinized by an ad hoc group of USGS geologists, which met virtually several times to examine earthquake connectivity, size, and rate implications on individual faults.  This level of engagement, which was made possible by an extensive set of web-based report, was unique with respect to NSHM model developments.  This led to several model improvements as well as future recommendations; in fact, their report (Hatem et al., 2023; here for now) is essentially a strategic plan for earthquake geology at the USGS.

[bookmark: _Toc127506023]Sub Regions

	For purposes of model-component development, analyses, and comparison with previous models, the greater U.S. region is subdivided into the following sub-regions (depicted in Figure 3): 
· Western U.S. (WUS) Collection (region for seismicity data and analyses)
· Central and Eastern U.S. (CEUS) Collection (region for seismicity data and analyses)
· UCERF (Greater California)
· Pacific Northwest
· Intermountain West
· Central and Eastern U.S. (CEUS)

	The first two "Collection" regions are for seismicity data analyses and the others are for model analysis.  Note that the Intermountain West - CEUS boundary utilized here differs from that applied for ground motion model selection (Petersen et al., 2014).  The de-regionalization of model-component development raises the question of whether the California portion of the model should be called “UCERF4” (a meme that, for better or worse, seems to have already taken hold).  We’d appreciate community feedback on this question.
	
[bookmark: _Toc127506024]Aftershocks

	Following UCERF3, aftershocks are now included in the 2023 earthquake rate models, although final ERFs can be “declustered” for hazard computations if so desired, as was done for UCERF3 in NSHM14/18.  While the declustering algorithm used previously (Gardner and Knopoff, 1974) does not seem to influence typical hazard metrics (because it predominantly only removes smaller events), more scientifically defensible declustering algorithms (e.g., based on the ETAS model; Ogata, 1988, 1998) now remove about half of all events, both large and small, which would not be appropriate for seismic hazard assessment.  There is now a significant body of literature asserting that, for 2% in 50-year hazard, we are better off keeping aftershocks and assuming a Poisson process than declustering with antiquated or biasing methodologies (Marzocchi and Taroni, 2014; Field et al., 2021; Wang et al., 2021; Michael and Llenos, 2022; ADD MORE??).  That said, there is also agreement that the longer-term goal should be to incorporate time dependencies correctly.  Furthermore, how to handle aftershocks is a policy decision that should be made in the context of specific uses, so for now we are keeping aftershocks to allow maximum flexibility (although note that declustering is still required with respect to inferring the long-term spatial distribution of seismicity, as discussed below in the Gridded Seismicity Sources section).

[bookmark: _Toc127506025]Fault Models (& Geologic Constraints)

	A fault model gives the 3D geometry of explicitly modeled faults.  More specifically, a fault model is simply a list of fault sections, where the latter are defined by a fault trace, dip, upper and lower seismogenic depth, and a geologically inferred rake.  Fault sections vary widely in length, and some can be quite long if associated attributes do not vary significantly along strike (e.g., Maacama and Bartlett Springs are ~170 km long).  Where faulting is dispersed, meaning a clear dominant surface is lacking, a fault zone (geographic polygon) is defined instead, although a “proxy” fault surface may also be provided (and note that we have discontinued the UCERF3 practice of assigning a polygon to all faults).  This section describes the new fault models, as well as other geologic constraints that are currently available and utilized.

[bookmark: _Toc127506026]Western U.S.

	A new western U.S. fault model was recently compiled and published by Hatem et al. (2022, https://www.nature.com/articles/s41597-022-01609-7), which is shown in Figure 4a.  About 350 new faults have been added (mostly outside California as can be seen as orange lines in the figure), which were previously excluded because they lack an explicit geologic slip-rate constraint.  UCERF3 had two fault models (alternative logic-tree branches), but we reduced this to one “preferred” model here because the differences were consistently non-consequential among various hazard and risk metrics (e.g., these UCERF3 electronic supplement plots; Figures 12, 16, and 17 of Field et al. (2015), Figure 4 of Porter et al. (2017) ; and Figure 6 of Field et al. (2020)). There are 1017 fault sections in this new fault model. 
	Hatem et al. (2022) also provide an updated compilation of geologic slip-rate estimates at points on faults, as well as a default-range estimate for faults that lack explicit studies (0 to 0.2, 0.2 to 1.0, and 1 to 5 mm/yr); the locations of all these are shown in Figure 4b.  These slip rates are used to constrain the Deformation Models described in the next section.
	The paleoseismic event-rate estimates for California faults have been updated and revised by McPhillips (2022, https://doi.org/10.1785/0220220127), including the addition of 7 new sites.  An innovation of this work is consideration of whether the event history has been correctly interpreted (previously assumed), leading to recurrence intervals that are 16% longer, on average, compared to the UCERF3 estimates (Biasi, 2013), plus the confidence bounds are wider.  This lengthening of recurrence intervals corrects for possible over interpretations (inferring too many events) in previous studies.  UCERF3 also utilized average slip-per-event data compiled by Madden et al. (2013), which was originally included here in the exact same way (converted to proxy event rates by dividing slip rate by this average slip).  However, a reexamination of the Madden et al. (2013) methodology and result (Hatem et al., 2023; here for now) found that these constraints appear to be both biased and assigned unrealistically low uncertainty bounds, making their relatively strong influence highly questionable.  We therefore removed these average-slip constraints from consideration until such questions can be resolved.  The probability of missed events, an important part of the inversion fault system solutions described below, remains the same as applied in UCERF3.
	For the Wasatch fault, we apply the 17 paleoseismic event-rate constraints compiled by Valentini et al. (2020), based on numerous studies referenced therein, and we apply the probability of missed events model used in that study as well (which differs from those applied in California).  We also utilize the segmentation boundaries defined by the Working Group on Utah Earthquake Probabilities (WGUEP, 2016), which are shown in Figure 5.
	
[bookmark: _Toc127506027]Central and Eastern U.S.

	Updates to the CEUS fault models and associated geologic constraints are provided by Jobe et al. (2022; https://doi.org/10.1785/0220220162), the results of which are shown in Figure 6.  The most consequential changes are the addition of two source zones (Central Virginia and Saline River) plus three other sources that have both an explicit fault and a polygon zone representation (Joyner Ridge, Crowleys Ridge (South) and Crowleys Ridge (West)). Five fault zones were converted to explicit faults (Commerce, Eastern Margin (north), Eastern Margin (south), Crittenden County, and Meeman-Shelby, the latter of which was previously called River Picks).  Minor adjustments were made to the geometries of four faults (Axial, Bootheel, New Madrid West, and Reelfoot), no adjustments were made to three faults (Charleston Uplift, New Madrid North, and Meers), and no adjustments were made to four fault zones (Marianna, Wabash Valley, Charlevoix, and Charleston).  In total we have gone from 16 CEUS fault sources to 21 here.  Jobe et al. (2022) also summarize the slip rate and/or paleo event rate constraints on each fault source.  How each of these sources are modeled is discussed in the Earthquake Rate Models section below.
  
[bookmark: _Toc127506028]Deformation Models

Model Descriptions

	Deformation models provide slip rate estimates for the explicitly modeled faults and some also provide “off fault” deformation as well.  Two new and 3 revised deformation models have been developed for the Western U.S., each of which is published in a special issue of Seismological Research Letters with an overview paper by Pollitz et al. (2022; https://doi.org/10.1785/0220220143).  These models, which are listed and summarized in Table 2, were also formally reviewed by a semi-independent team, the results of which will be published by Johnson et al. (2023, available here for now).  
	All deformation models utilize the Hatem et al. (2022a) fault model and geologic slip-rate constraints described above (including the ~350 new faults that were assigned broad, categorical slip-rates due to their lacking explicit constraints), plus the significantly enhanced horizontal GPS velocity vectors provided by Zeng (2022a;  https://doi.org/10.1785/0220220180). The four geodetic based models also include corrections for “ghost transients”, meaning time-dependent effects caused by viscoelastic relaxation from large historic events (Hearn, 2022, https://doi.org/10.1785/0220220156); this correction increases geodetically inferred slip rates along the San Andreas corridor making them more consistent with geology (see Pollitz et al. (2022) supplemental figure S4). 
	Models also utilize a more refined inference and correction for creep (Johnson et al., 2022; https://doi.org/10.1785/0220220186), which is based on a factor of ~6 increase in surface creep data (mostly InSAR) and an elastic model inversion that solves for the spatial distribution of interseismic fault creep on California faults.  Significant creep occurs in northern California on the central section of the San Andreas Fault, along the Hayward and Calaveras faults through the San Francisco Bay Area, and along the Maacama and Bartlett Springs faults to the north. In southern California, creep is observed on the Coachella segment of the San Andreas Fault, the Brawley Seismic Zone, and along the Imperial and Superstition Hills Faults.






Table 2
Deformation Models
	Name
(weights*)
	Description

	Geologic Model
(Review team wt: 0.2)
(Final wt: 0.26)
	This model, developed by Hatem et al. (2022b, https://doi.org/10.1785/0220220154), assigns the Hatem et al. (2022a) geologic slip-rate estimate for faults that have explicit constraints.  For other faults, they did not simply set the preferred slip rate as the mid-point of the default categorical range.  Instead, they derived slip-rate estimates (including uncertainties) by comparing regional consistency of the categorical ranges with geodetic strain rates in different tectonic subregions, thereby enabling more subtle adjustments to avoid regional biases.

	Shen-Bird
(Review ream wt: 0.25)
(Final wt: 0.32)
	This model, by Shen and Bird (2022, https://doi.org/10.1785/0220220179), is an update of the Neokinema model by Bird (2009), which is a kinematic, finite-element code that models neotectonic crustal deformation caused by fault slip, constrained by geological fault-slip rates, tectonic stress orientations, and GPS velocities.

	Zeng
(Review team wt: 0.25)
(Final wt: 0.32)
	This model, by Zeng (2022b, https://doi.org/10.1785/0220220209), utilizes the method of Zeng and Shen (2017) to invert for slip-rate and strain-rate parameters based on GPS velocities and geologic slip-rate constraints assuming deep driven dislocation sources (below a locking depth).

	Pollitz
(Review team wt: 0.2)
(Final wt: 0.08)
	This model, from Pollitz (2022, https://doi.org/10.1785/0220220137), assumes that interseismic crustal deformation arises from viscoelastic relaxation of the ductile lower crust and mantle in response to episodic slip events on faults, compounded by the effect of steady creep on portions of some faults.

	Evans
(Review team wt: 0.1)
(Final wt: 0.02)
	This block model, by Evans (2022, https://doi.org/10.1785/0220220141), is an inversion-based approach that assumes deformation is a sum of rigid block rotations plus backslip due to fault locking.  The primary improvement over previous block models is block-boundary representation for all fault sections, rather than just a subset, requiring more than 800 blocks that connect the discontinuous faults (generated with and automated algorithm).


* "Review team wt" is the original deformation-model review panel weight (Johnson et al., 2023) and "Final wt" is the revised, final value applied here.

	Figure 7a shows the average slip rates from the Geologic deformation model and Figure 7b shows how the other models differ (ratios with respect to Geologic model slip rates).  This comparison reveals considerable variability among models in many places.  This is not surprising given slip rates are certainly underdetermined on many faults due to limited observational constraints, especially in the continental interior where GPS data are sparser.  Agreement between models owes largely to how much each adheres to the preferred geologic slip-rate constraints, with the Zeng and Shen-Bird models effectively applying the narrowest Gaussian prior, the Evans model applying a wider Gaussian (that permits slip rates to fall outside the geologic bounds), and Pollitz applying a uniform prior over the bounds (causing the latter to often produce slip rates at the geologic minimum or maximum).  The geodetic models tend to produce systematically higher values on very low slip rate faults (≤0.1 mm/yr), which appears at least partially required by geodetic data (Pollitz et al., 2022).   

[bookmark: _Toc127506029]Branch Weights

	The review team (Johnson et al., 2023, available here for now)) recommended the branch weights listed as "Review team wt" in Table 2 based on a score-card evaluation of 15 different metrics.  In their own words:

“We assign the Shen-Bird and Zeng models the highest weight [0.25] based on their overall favorable comparison across all metrics. We give the Geologic model a slightly lower weight [0.2] largely because less information is used to construct this model and in also because much of the information that constrains the Geologic model (preferred slip rates, upper and lower slip rates, rake) is also used to constrain the geodetic models. The Pollitz and Evans models provide slip rate estimates that differ most from the other three deformation models. We give the Pollitz model a modestly lower weight [0.2] than the Shen-Bird and Zeng models because of systematic misfits to the geodetic data and high path integral weights in some locations. We recommend the lowest weight be assigned to the Evans model [0.1] because it displays anomalously high gradients in slip rates along faults, a large number of slip rate outliers, and numerous faults show slip sense inconsistent with geology.”

	The central question is the extent to which the five slip-rate “samples” available for each fault represent an adequate approximation of the epistemic-uncertainty PDF (e.g., what we would see if we had 10,000 credible models).  Part of this question is how any null space is being sampled by each model.  For example, consider two parallel faults that lack direct geologic slip-rate constraints but are nestled between two GPS stations; these faults could exhibit a near-perfect slip-rate trade off in terms of satisfying the GPS deformation (e.g., a maximum slip rate on one with a minim on the other, or vice versa, or any linear combination of these might fit the data equally well).  Ideally, we would sample multiple models to represent this epistemic uncertainty, where the average of these would split the difference (equal slip rates on each fault).  This average would seemingly reflect what we want from a policy perspective if we are getting only one sample from a given model (as is the case here).  The Zeng and Shen-Bird models sample the geodetic null space by staying as close as possible to the geologic constraint.  The Pollitz and Evans models are less restrictive, by design, and therefore have a greater number of outliers in both directions, and we cannot rule out the possibility that many of these slip rates are more correct.  However, we should question the robustness of high vs low outliers on nearby faults; could the slip rates be swapped without degrading the fit to data?  This gets at the question of whether currently reported slip rates represent an average of all viable samples from the null space of each model.  We have not had time to thoroughly investigate this question, and in fact this represents a grand challenge that will require time and resources to address.
	The question here is how to handle the five slip-rate samples we have for each fault, and it turns out that outliers are quite consequential.  This was discovered by examining hazard maps generated with the original weights (Table 2), for which mean hazard was appearing far above the median.  Because hazard generally scales linearly with slip rate, we can illustrate the problem here without resorting to hazard calculations (slip rate change is a good proxy for hazard change).  Figure 8a shows a scatter plot of the original branch-averaged slip rate versus the median for each fault section, indicating that 12% of the means are more than a factor of 2 above the median, and Figure 8b shows all the individual model slip rates versus the median (color coded by deformation model).  The most extreme case is the King Range fault in NW California, for which the mean (0.84 cm/yr) is a factor of 60 above the median (0.014 cm/yr) due to the Evans model having a slip rate that is a factor of 570 above the median (8.0 cm/yr).  Thus, high slip-rate outliers can have a disproportionate influence on mean hazard because the slip rate can be no less than the product of the outlier value times that model's weight.  For example, if an outlier is a factor of 100 above the average of the other models, then the average is increased by more than factor of 20 if all five models are equally weighted.  This bias is asymmetric with respect to outliers at the low end because a slip rate of zero can only bring the mean down by 20% if weights are equal, which explains why the means are generally pulled above the medians in Figure 8a.
	One solution is to use a deformation model composed of median slip-rates for our "best estimate" hazard model (propagating this through all other logic tree branches), while keeping the individual branches with their respective weights to get a sense of overall epistemic uncertainties.  This makes sense from a policy perspective in that slip rates effectively stay anchored near geologic values unless at least three models deviate in the same direction, and with the third-least outlier being adopted as the slip rate.  The disadvantage is that we have yet another model to process and document, and this goes for any users who want to implement and explore epistemic uncertainties themselves (and we don't want anyone to ignore deformation model epistemic uncertainties because they are among the most consequential).  In other words, there is a danger that adding this complexity could represent a further impediment to properly exploring epistemic uncertainties, especially among user groups.
	Another solution suggested and explored by members of the participatory review panel is to apply an outlier replacement scheme, which seems to work well, but requires some arbitrary decisions and additional processing steps.  In the end we opted for the simplest approach of down-weighting models that have both null-space-sampling questions and concerning outliers.  Specifically, where the mean is more than a factor of two above the median in Figure 8a, the Evans and Pollitz models contribute the most consequential outliers in 64% and 24% of these cases, respectively. We therefore lowered the weight on the Evans model from 0.1 to 0.02 and that on the Pollitz model from 0.2 to 0.08 (and consequently raised the weights on the other models proportionally; see Table 2).  A scatter plot of mean versus median slip rates following this revision is shown in Figure 8c.  The fraction of faults where the mean is more than a factor of two above the median is now 5% (down from 12%), and Evans and Pollitz contribute the most consequential outliers for 16% and 14% if these cases (down from 64% and 24%, respectively).  We use these final weights in the model presented here, but we also evaluated this against hazard computed using the median slip-rate model and the various outlier pruning schemes described above to confirm overall consistency.
	One might also be tempted to apply regionally dependent weights, and in fact there was much discussion of this during development and review, but this raises challenges we did not have time to address (like exactly how to define the sub-regions and associated weights).  That said, site specific studies could easily re-weight the complete set of hazard curves with customized weights (with the implicit assumption that the weights apply to all faults that influence the hazard at a site).
[bookmark: _Toc127506030]Off-Fault Deformation 

	The four geodetic deformation models also provided estimates of off-fault deformation (Figure 14 of Pollitz et al. (2022) or Figure 4 of Johnson et al. (2023)).  However, and as in UCERF3, it is not clear how much of the implied features are real versus artifacts of model assumptions and approximations, so we have once again declined use of these, at least for now.  This is consistent with recommendations of the review team (Johnson et al. (2023), who also discuss what it might take to improve such estimates.

[bookmark: _Toc127506031]Earthquake Rate Models
	
	An earthquake rate model gives the long-term rate of every possible earthquake rupture in a region (and at some level of discretization). The model is essentially a list of “sources”, where each of the latter represent a collection (or list) of related ruptures. The next four sections define and describe each of the source-model types and the instances developed and utilized in this update, followed by a section describing details and issues associated with combining them into a complete model.  The goal has been to be as concise as possible, yet highlighting all salient changes and influential decisions, leaving many important but potentially distracting implementation details to references cited.
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	An inversion-based fault system solution is just one type (or subclass) of fault system solution, with the latter being defined as a source that represents the long-term rate of every possible rupture on a potentially interconnected fault system.  More specifically, this generalized source is composed of 
1) a list of fault subsections (including a finite-surface representation of each)
2) a list of fault ruptures (each of which has a magnitude, long-term rate, average rake, and a finite rupture surface defined as a list of utilized subsection indices)  
The primary advantage of this source type is representation of multifault ruptures, although it is equally applicable to a single, isolated fault (e.g., Field et al., 2020a).  Note also that this definition says nothing about how the model is created; traditionally this was via an inversion approach (discussed below), but it could also be a traditional, prescriptive model (e.g., segmented or isolated faults with a prescribed MFD and “floating” rupture assumptions), or a model inferred from multicycle physics-based simulators, the latter of which might also provide rupture slip-time histories for use in physics-based ground-motion modeling  (e.g., Milner et al., 2021). Another significant advantage is built-in tools for computing implied attributes such as slip rates, recurrence intervals, nucleation and participation MFDs, and slip probability distributions along strike (e.g., to predict what would be seen at a paleoseismic site; Hecker et al., 2013).  Depending on how the model is constructed, potential disadvantages are discretization issues and non-smooth models (e.g., jagged MFDs).
	At present, all Western U.S. faults are modeled as fault system solutions, with the vast majority being inversion based.  The inversion approach is now well documented in the literature (Andrews and Schwerer, 2000; Field and Page, 2011; Field et al., 2014; Page et al., 2014; Valentini et al., 2020; Field et al., 2020a) and one could argue that these models have undergone much more scrutiny and testing than classic models.  Significant uncertainties remain, however, especially with respect to the prevalence of multifault ruptures, with Schwartz (2018) arguing that UCERF3 went too far and Page (2021) countering that it did not go far enough. To acknowledge this uncertainty, and to better quantify the influence on hazard, recent papers have endeavored to make the degree of segmentation and the propensity for multifault ruptures an adjustable parameter (Valentini et al., 2020; Field et al., 2020a).  Further improvements on this and other aspects of the inversion have also been made in the context of this project, leading us to assert that we can now span a complete range of reasonable models (e.g., from strictly segmented models to ruptures that can jump up to 15 km).  Full details of the new inversion protocol are given in Milner and Field (2023; available here), including a quantification of methodological differences (by comparing UCERF3 results to the new inversion protocol applied with UCERF3 data constrains). This new inversion protocol and results for Western U.S. fault are summarized here.

[bookmark: _Toc127506033]Defining the Rupture Set

	The goal of the inversion is to quantify the rate of all plausible supra-seismogenic ruptures (events that have rupture lengths greater than or equal to the down-dip width).  To this end, the 1017 fault sections are subdivided into lengths that are equal to (or just less than) half the down-dip width, yielding 5,577 subsections in the Western U.S. (and note that, to avoid confusion, the original fault sections are sometimes referred to as “parent fault sections”). Supra-seismogenic rupture surfaces are defined by two or more neighboring subsections.
	The consequent set of possible earthquakes is effectively infinite without further considerations, so a plausibility filter is applied to cull the ruptures to a credible, representative, and manageable set.  A new approach was developed by Milner et al. (2022; https://doi.org/10.1785/0120210322) for this purpose, which, relative to that applied in UCERF3, is more permissive and has more connectivity (e.g., rupture jumps up to 15 km), yet heavily penalizes long ruptures that take multiple improbable jumps. It also reduces the number of nearly identical ruptures by increasing rupture lengths geometrically at large magnitudes (BIASI REFERENCE?).  Encouragingly, Milner et al. (2022) also found the new approach to be more consistent with results implied by the RSQSim multi-cycle physics-based simulator (Dieterich and Richards-Dinger, 2010; Shaw, 2019).
	Figure 9 shows which sets of Western U.S. faults are interconnected by less than 15 km, implying multi-fault ruptures are possible almost everywhere.  Applying the Milner et al. (2022) plausibility filter to the Western U.S. fault model yields about 580,000 ruptures, which is roughly double the number in UCERF3.  Again, this is the set that is considered to have a non-zero probability of occurrence; the long-term rates will be determined by the inversion.  

[bookmark: _Toc127506034]Treatment of Fault Creep

	The Johnson et al. (2022) analysis of creep also provided deformation-model specific moment-rate reductions (creep fraction) for each creeping fault. Following UCERF3, we partition this between an aseismicity factor (a reduction in rupture area) and a coupling coefficient (a reduction of slip rate).  The idea is that for slowly creeping faults, creep occurs predominantly at the top of the seismogenic zone, resulting in a reduction of seismogenic area, while for highly creeping faults, there is creep at all depths, which effectively reduces the slip rate, and therefore the rate of ruptures through highly creeping areas.  We define a threshold creep fraction (), such that
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In UCERF3 the creep-fraction threshold was set as =0.9, meaning rupture areas were reduced by up to 90%. This rather large reduction was applied to get M ~6 earthquakes from the Parkfield section of the San Andreas fault.  We have lowered  to a more physically realistic value of 0.4 here, in part because the new creep and deformation models imply greater creep factions at Parkfield, and consequent magnitudes are within uncertainties.  UCERF3 also capped creep fraction at 0.95 (preventing seismogenic slip rates from going to zero on the SAF creeping section); we have relaxed this cap because the deformation models now span a wider range of implied moment-rate reductions.  For faults that lack a creep fraction constraint we apply a default value of 0.1 (the approximate average over where it is known), consistent with UCERF3.

[bookmark: _Toc127506035]Scaling Relationships

	The magnitude (M) and average displacement for each rupture are defined by a scaling relationship, the choices of which are based on a recent revaluation by Shaw (2023; resubmission available here).  The three magnitude-area scaling relationships for plate boundary faults are as follows:

	(WGCEP, 2003)
	(WGCEP, 2003)
                              (Shaw, 2013)

where M is magnitude, A is area (km, and reduced by aseismicity factor), and Wo is the original down-dip width (unreduced by aseismicity).  These options, plotted in Figure 10a, are referred to as “LogA+4.1”, “LogA+4.2”, and “Width Limited”, respectively.
	Three different approaches are used to get average slip for each rupture (Dr). The first, referred to as From Moment, is computed from the magnitude-implied moment (), rupture area (), and shear modulus ( = 3.0  1010 Pa) as follows:

.

The second average slip equation, referred to as Sqrt Length, is 


(where Lr is rupture length in km) and the third, referred to as Const Stress Drop, is

.

The logic tree branches shown in Figure 2 represent the six scientifically viable combinations of the three magnitude and three average slip equations, each of which is given equal weight (see Shaw (2023; resubmission available here) for details, including full functional forms of equations in terms of physical parameters).  Figure 10b shows implied average slip versus rupture length for the six branches. Note that the Sqrt Length and Const Stress Drop relationships, relative to From Moment, generally give smaller Dr for longer ruptures. This difference reflects the epistemic uncertainty regarding the depth to which large ruptures penetrate; the From Moment model assumes ruptures do not penetrate below the depth of microseismicity, necessitating a larger average slip than typically observed at the surface, whereas the other two models assume surface slip is consistent with that at depth and that large ruptures must therefore penetrate to greater depths.
	The branches are largely consistent with those applied in UCERF3, with the exception that the Hanks and Bakun (2009) model has been removed due to unrealistically large slips for large ruptures (green line in Figure 10b) and the LogA+4.1 option has been added to provide more epistemic uncertainty.  We also removed a UCERF3 restriction in which the Sqrt Length and Const Stress models were not used if average aseismicity was greater than 0.2.  All of these scaling relationships are new for faults outside California, as previous USGS NSHMs only applied the Wells and Coppersmith (1994) magnitude-length relationship in those areas (ignoring down-dip width variations).  The latter has been abandoned because it is insensitive to down-dip width.

[bookmark: _Toc127506036]Slip Rate and Paleoseismic Event-Rate Matching

	The equations currently used in the inversion are summarized and described in Table 3.   Equation Set (1) matches the slip rates provided by a chosen deformation model. These equations require a Slip Along Rupture (Dsr) model, which gives the average slip on the sth subsection for the rth rupture.  UCERF3 utilized two options (logic tree branches): a Tapered (Sin1/2) and a Uniform (boxcar) model.  These alternatives were consistently non-consequential across all hazard and risk metrics analyzed, so we now use only the Uniform (boxcar) option, although the Tapered option is still maintained for sensitivity tests.  Although each deformation model provided a fault-specific slip rate uncertainty, we assumed a 10% standard deviation due to questions of overall reliability and consistency between models, and to control the inversion behavior where uncertainties are high (essentially over-fitting the data with an assumption that a given deformation model is correct).
	Equation Set (2) matches paleoseismic recurrence intervals as in previous studies, and Equation Set (3) enforces an along-strike smoothness to prevent strong rate spikes or troughs at paleo sites (or where segmentation is imposed, as discussed below); in UCERF3 this was applied independently for each magnitude bin, but we have since determined that applying this to the total supra-seismogenic rate is adequate (Field et al., 2020a).  We also now have three logic-tree branches with respect to how well paleoseismic recurrence intervals are fit (under-, even-, and over-fit; Figure 2) to further quantify the influence of these data (UCERF3 results were effectively slightly under fit); this was achieved by multiplying data uncertainties in the inversion by 0.2, and 10 for the over and under-fit cases respectively.  
	Equation Set (4) constrains a group of ruptures to have a specified total rate, which is only used to ensure M ~6 ruptures on the Parkfield fault section have a collective rate of once every 25 years (similar to that applied for UCERF3).


Table 3
Inversion-based Fault-System Solution Equation Sets*
[image: Text
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        * fr represents the frequency or rate of the rth rupture (what we are solving for).

[bookmark: _Toc127506037]Target MFDs and b-value Branches

	Equation Set (5) imposes a total regional MFD constraint for supra-seismogenic, on-fault ruptures.  In UCERF3 this was derived using a reasonable but somewhat complex and confusing procedure, which involved summing gridded-seismicity rates inside assumed fault-zone polygons and making other assumptions to obtain the target MFD. As such, the target MFD was conditioned on the gridded seismicity branch, increasing the number of inversions by a factor of 18 (the number of gridded-seismicity branches in UCERF3; here it would be a factor of 54).  Our new inversion protocol decouples inversion-based fault system solutions from the gridded seismicity model; that is, the gridded seismicity model now depends on the inversion rather than the other way around.
	It is useful to introduce another constraint and logic-tree branch before discussing how the total regional target MFD is now computed.  Equation Set (6) allows us to target a specific nucleation MFD on each fault subsection.  In UCERF3 this was used to constrain results to be as close to the previous model (UCERF2) as possible, thereby allowing deviations from UCERF2 only to the extent required by other data constraints.  While this was defensible at the time from a policy perspective, it did limit the range of epistemic uncertainties considered, and perhaps anchored the model inappropriately.  
	To map out a more complete range of models, we sweep over a range of target on-fault b-values for supra-seismogenic rupture nucleation.  The target MFD in Equation Set (6) is generated for each fault subsection by constructing a Gutenberg-Richter distribution between the minimum and maximum supra-seismogenic magnitude on that subsection, applying the chosen b-value, and scaling the y-axis to satisfy the moment rate implied by the target subsection slip rate (from the chosen deformation model).  By applying a range of b-values (e.g., branches between 0.0 and 1.0; Figure 2), we are effectively sweeping over a range of total rupture rates (because the latter of varies monotonically with b-value).  Total rupture rate is a pretty good proxy for hazard, and varying b-value allows us to dial between the two extremes: the maximum rate model (if only the minimum magnitude ever occurs) and the minimum rate model (if only the maximum magnitude occurs); see Figure 6 of Field et al. (2020a) for an illustration of this.  Note that instead of applying the entire nucleation MFD to each subsection, we also support the option of applying only total nucleation rate, which was found by Field et al. (2020a) to produce equivalent hazard even though final MFDs can be a bit different (their Figure 16).  We use the latter constraint in the inversion results presented here (that is, we apply a b-value consistent total rate constraint to each subsection rather than a complete target MFD; ADD THIS EQUATION TO TABLE 3?).  
	The total regional MFD constraint for supra-seismogenic ruptures (Equation Set (5)) is simply the sum the subsection MFD targets just described.  We assume supra-seismogenic, on-fault b-values are correlated across the region, which, as noted in the Introduction, may not be correct.  While adjacent fault sections most certainly have correlated b-values, because they participate in the same larger events, it is reasonable to presume that distant faults do not.  It is not clear how one would define and sample from some b-value correlation structure, so we are stuck with assuming perfect spatial correlation, at least for now.  Again, this is a safer assumption for site specific hazard curves, but reconsideration of outlier branch weights might be appropriate for spatially distributed studies (e.g., portfolio risk analyses). 

[bookmark: _Toc127506038]Segmentation Constraints

	The simplest segmentation constraint (Equation Set (7)) involves constraining the co-rupture rate of two subsections (i.e., on opposite sides of a segmentation boundary) to be less than some specified fraction () of the minimum final participation rate on either of those subsections (referred to hereafter as the “fractional passthrough rate”).  As  goes to zero, no ruptures can pass through the boundary, and as it goes to 1.0 the constraint has no impact.  This constraint is applied at the WGUEP (2016) segmentation points on the Wasatch fault (Figure 5), where we apply  values of 0.0, 0.25, 0.5, 0.75, or 1.0 depending on the segmentation logic-tree branch (Table 4).
	For all other faults we apply the jump-distance-dependent segmentation model represented by Equation Set (8), where the fractional passthrough rate is now distance dependent.  There is no penalty out to some specified distance (d), beyond which the maximum passthrough rate falls exponentially according to the value of the decay parameter (). Note also that this is an inequality constraint, meaning relative passthrough rates can be less but not more than the constraint.  Figure 11 shows the passthrough rates vs jump distance for our three intermediate segmentation branches (also described in Table 4).  Recall that UCERF3 had only a strict cutoff distance at 5 km, with no penalty for shorter jumps and zero allowance for longer ones.

Table 4
Segmentation Branch Options
	Branch Name
	Segmentation Rules Applied

	None
	· No Segmentation constraint (jumps allowed up to 15 km)

	Low
	· Distance dependent parameters:  = 4 km; d = 3 km
· SAF Creeping Section:  = 0.75
· Wasatch:  = 0.75

	Medium
	· Distance dependent parameters:  = 3 km; d = 2 km
· SAF Creeping Section:  = 0.5
· Wasatch:  = 0.5

	High
	· Distance dependent parameters:  = 2 km; d = 1 km
· SAF Creeping Section:  = 0
· Wasatch:  = 0.25

	Classic
	· Parent fault sections prevented from rupturing with neighbors & ruptures are prescribed using target MFDs*
· “Special” faults can rupture designated sections (= 2 km; d = 1 km)
· SAF Creeping Section:  = 0
· Wasatch:  = 0


      * Note that if Supra-seismogenic b-value =0, full-fault rupture is applied for non-special faults to be consistent with traditional implementations. 


	Introducing segmentation constraints introduces a potential inconsistency with how we construct the subsection target nucleation MFDs (discussed above). Recall that the chosen b-value was said to be applied out to the maximum supra-seismogenic magnitude available.  However, as we dial up segmentation, we must also be lowering the frequency of these largest ruptures (plus increasing the rate of smaller events to match slip rates).  In other words, the target MFD should depend on the segmentation model, with more roll-off being applied at higher magnitudes for more segmented models. Milner and Field (2023, available here) explored a variety of options for correcting this.  The simplest involves using strict distance cutoffs in the inversion, as in UCERF3, for which the target MFD algorithm described above is most credible.  We then compute a suite of inversions for a range of strict distance cutoffs (e.g., at 1 km increments between 3 and 15 km), and then weight-average these solutions by whatever amounts produce the desired distant-dependent segmentation (average passthrough rates).  Although conceptually simple (and effective), this approach requires more inversions and post-processing steps (inverting for weights that match the distance decay and summing the models accordingly).  We therefore applied one of the more conceptually complicated options for the results presented here (see Milner and Field (2023) for details), but we also confirmed that implied differences for the various options are negligible compared to other epistemic uncertainties.
	Two final segmentation branches were applied to bracket the others with more extreme end members.  One branch (None) applies no segmentation constraint and allows rupture jumps up to 15 km (with no distance penalty). A justification for this is that we don’t really know the true connectivity at depth, so this branch errs on the side of caution (e.g., what appears to be a 10 km gap might be less).  The other branch (Classic) mimics the traditional strict-segmentation approach in confining ruptures to parent faults sections (no jumps between them).  A range of b-values is still applied in accordance with the logic-tree branches, and unless one or more paleoseismic event rates are available, rupture rates are prescribed in the traditional way (distributed uniformly along the fault) rather than conducting an inversion. A further modification is that full-fault rupture is applied on the b-value = 0 branch (effectively changing the b-value to ), thereby ensuring that we have this traditional full-fault-rupture-only model as well.  Exceptions are made on this Classic branch for the “Special” faults listed in Table 5, each of which was either connected in previous studies or has had a large historic earthquake that extended beyond individual fault sections (see Table 5 caption for details).  For these we apply an inversion where ruptures are confined to the set of subsections defined for each special fault (with = 2 km and d = 1 km), and we do not apply the 0 to  b-value override.  For the Wasatch fault, we also apply strict segmentation (=0) in the inversion for this classic branch. 
	A final option is whether ruptures can pass through the San Andreas Creeping section, which is handled by effectively varying  (in Equation Set (7)) between 0 and 1 depending on the segmentation branch (Table 4). Note, however, that on even the most permissive branch (=1) there are still significant slip-rate reductions due to creep; the additional penalty provided ≤1 accounts for other possible dynamic rupture impediments.

Table 5
Special Faults - the fault sections (index, name) associated with each of these are combined for the Classic segmentation model branch; these are either treated as such in previous studies or based on historical earthquakes as noted under the names.
	Name
(inclusion basis)
	index, name of parent sections included

	San Jacinto
(UCERF2 type A)*
	154, Lytle Creek (San Jacinto, connector); 803, San Jacinto (Clark); 804, San Jacinto (Anza); 805, San Jacinto (stepover); 806, San Jacinto (San Jacinto Valley); 807, San Jacinto (San Bernardino); 800, San Jacinto (Superstition Mountain); 801, San Jacinto (Borrego); 802, San Jacinto (Coyote Creek)

	Calaveras
(UCERF2 type A)
	84, Franklin; 295, West Napa; 346, Southampton; 354, South Napa; 920, Calaveras (south, Paicines); 921, Calaveras (south); 922, Calaveras (center); 923, Calaveras (north)

	Hayward-Rodgers Creek
(UCERF2 type A)
	11, Bennett Valley; 155, Maacama; 900, Hayward (south, extension); 901, Hayward (south); 902, Hayward (north); 903, Rodgers Creek - Healdsburg

	Garlock
(UCERF2 type A)
	880, Garlock (west); 881, Garlock (center); 882, Garlock (east)

	San Andreas
(UCERF2 type A)
	19, Brawley; 126, Imperial; 166, Mill Creek (San Andreas, north branch); 168, Mission Creek; 244, San Gorgonio Pass; 355, Cox Ranch; 700, San Andreas (Coachella); 701, San Andreas (San Gorgonio Pass - Garnet Hill); 702, San Andreas (San Bernardino, south); 703, San Andreas (San Bernardino, north); 704, San Andreas (Mojave,  south); 705, San Andreas (Mojave,  north); 706, San Andreas (Big Bend); 707, San Andreas (Carrizo); 708, San Andreas (Cholame); 709, San Andreas (Parkfield); 710, San Andreas (Creeping); 711, San Andreas (Santa Cruz Mountains); 712, San Andreas (Peninsula); 713, San Andreas (North Coast); 714, San Andreas (Offshore); 715, San Andreas (Banning)

	Elsinore
(UCERF2 type A)
	840, Elsinore (Coyote Mountains); 841, Elsinore (Julian); 842, Elsinore (Temecula); 843, Elsinore (stepover); 844, Elsinore (Glen Ivy)

	Wasatch
(WGUEP, 2016)
	2780, Wasatch (Brigham City); 2778, Wasatch (Clarkston Mountain); 2789, Wasatch (Collinston); 2782, Wasatch (East Bench); 2786, Wasatch (Fayette); 2791, Wasatch (Foothills); 2785, Wasatch (Levan); 2229, Wasatch (Malad City); 2787, Wasatch (Nephi, north); 2784, Wasatch (Nephi, south); 2783, Wasatch (Provo, north); 2790, Wasatch (Provo, south); 2792, Wasatch (Salt Lake City, north); 2793, Wasatch (Salt Lake City, south); 2788, Wasatch (Virginia Street); 2781, Wasatch (Weber)

	Landers
(Hist. Qk)
	27, Camp Rock; 78, Emerson - Copper Mountain; 119, Homestead Valley; 129, Johnson Valley (north); 135, Kickapoo; 23, Burnt Mountain; 79, Eureka Peak

	Hector Mine
(Hist. Qk)
	113, Hector Mine; 210, Pisgah - Bullion Mountain - Mesquite Lake

	Hebgen Lake
(Hist. Qk)
	2305, Hebgen; 2329, Red Canyon

	Pleasant Valley
(Hist. Qk)
	1208, Pleasant Valley (Sou Hills); 1207, Pleasant Valley (Pearce); 1209, Pleasant Valley (Tobin); 1206, Pleasant Valley (China Mountain)

	Cedar Mountains
(Hist. Qk)
	1080, Monte Cristo Valley; 1260, Gabbs Valley (unnamed); 1171, Gabbs Valley

	Lost River
(Hist. Qk)
	2505, Battle Rock; 2226, Lone Pine

	Sonora
(Hist. Qk)
	2062, Pitaycachi (north); 2063, Pitaycachi (south)

	Fairview Peak
	1173, Gold King; 1126, West Gate; 1182, Louderback Mountains; 1051, Fairview


* " UCERF2 type A" means it was defined in Field et al. (2009).
[bookmark: _Toc127506039]Some Implementation Details
	
	We continue to use the Page et al. (2014) simulated annealing algorithm to solve the inversion, but with some enhancements from Field et al. (2020a) and even more from Milner and Field (2023, available here).  These include testing and refinements with respect to the various simulated annealing options (rupture sampler, perturbation function, cooling schedule, completion criteria, and non-negativity constraint).  The first author of Milner and Field (2023) has also made the following important enhancements: 1) a new OpenSHA modules framework to track what options were used for each inversion (for reproducibility); 2) implementation of dynamic equation-set re-weighting to ensure more uniform fits to different data types; 3) improved code efficiencies, which have reduced compute times by a factor of 200 relative to UCERF3 computations; and 4) operationalized generation of web-based solution reports.
	The inversions can be done for the entire Western U.S. or separately for each group of interconnected faults (those depicted in Figure 9, some of which are single, isolated fault sections).  We chose the latter for the results presented here, but differences are negligible provided other constraints are handled consistently.  
	UCERF3 applied a slip rate reduction of 4% to 10% (depending on the logic-tree branch) to account for the moment released by sub-seismogenic, on-fault ruptures, whereas no such reduction was made outside California in NSHM14/18.  We tried, but failed to come up with a new, defensible approach for specifying these values on a fault-specific basis (attempts are fraught with debatable assumptions), so we are currently applying no such correction, although a single across-the-board value (e.g., 7%) might be more defensible.

[bookmark: _Toc127506040]Model Nonuniqueness
	
	It is well documented that fault system solutions are nonunique given the underdetermined nature of the problem, as there are many more unknowns (rupture rates) than there are data constraints (Page et al., 2014; Field et al., 2014; Field et al., 2020a).  This means there is an effective infinite number of different models that will satisfy the data constraints (the so-called “null space”), although these are also bounded by the minimum- and maximum-rate models discussed above (and in Field et al. (2020a)).  Given that simulated annealing is a random sampling algorithm, one might hope that multiple runs would sample the null space uniformly, thereby mapping out a complete range of models (epistemic uncertainties). Unfortunately, this in not generally the case, meaning additional constraints need to be applied to sweep across the null space, and not doing this can lead to solutions that are biased by the simulated annealing starting model or rupture sampler (Field et al., 2020a).  This is one of the primary reasons we added the b-value branches, as we believe these give us more control on where solutions land and allow us to sweep across a reasonable range of models between the minimum- and maximum-rate solutions.
	Another manifestation of nonuniqueness is that solutions typically have only a small fraction of non-zero rate ruptures (~9% on average here here), and that different simulated annealing runs will have a somewhat different set due to the random sampling.  Fortunately, these differences have negligible influence on hazard because the latter is generally independent of the exact endpoint of ruptures (being much more influenced by the MFD at the nearest point on a fault, which is now more explicitly constrained).  In fact, Field et al. (2020a) demonstrated that two solutions with no overlapping ruptures (i.e., the second run was prevented from sampling ruptures that had non-zero rates in the first) produce nearly identical hazard (their Figure 12b).  Having a lot of zero rates is good in terms of faster hazard calculations (fewer ruptures to loop over), but problematic in terms of testing models against future earthquakes (in which case it is unwise to say anything cannot happen if the data are ambivalent).  In UCERF3 we applied a water level to rupture rates to ensure all had non-zero values, but we have dropped that here in part because it has no impact on hazard.  Averaging over all logic tree branches raises the percentage of non-zero rate ruptures to 99%.
	Another attempt we have made is to employ the random nature of simulated annealing to even fit the data, meaning it would produce a range of models for which misfit statistics exactly match the data uncertainties applied.  Unfortunately, we have not been able to get this to work either, as average models can end up significantly biased with respect to the target constraints (e.g., Figure 14 of Field et al (2020a)).  Achieving this would apparently require random sampling the data constraints (from the associated uncertainty distribution) and over-fitting these samples in the inversion.  The challenge is that data constraints are likely correlated (e.g., slip rates on adjacent fault subsections), so we have not attempted this here.  The bottom line is that we have largely over-fit data constraints in this study, except where there are incompatibilities between them, and the set of non-zero-rate ruptures for individual branches is certainly sensitive to this over fitting (data "noise" is influencing which ruptures are kept or excluded).  Averaging over all branches helps smooth these variations out.  None of these issues have been found to impact hazard inferences.
[bookmark: _Toc127506041]Other Considerations

	Given the set of logic-tree branches influencing these fault system solutions, we have 2250 different inversion models.  Each takes about 1 hour to compute on a typical desktop computer.  The set presented here was computed on a cluster at USC’s Center for Advance Computing Research, which took about 2.5 days utilizing 36 nodes (and 1.8 TB of disk space).  Computing all the hazard diagnostics described below took a few more days.
	Also note that, in contrast to the classic fault models discussed next, minimum supra-seismogenic magnitudes vary between fault sections here, and we do not account for dip uncertainties or depth to top of rupture variability (although the latter two could be handle in the hazard calculations if desired).
[bookmark: _Toc127506042]Classic Fault Sources

MAYBE MOVE THIS TO BEFORE THE PREVIOUS SECTION?
	This source type is the traditional representation for faults, which is typically composed of a finite fault surface, an MFD, rules for computing rupture dimensions from magnitude, and an assumption about the along-strike probability of occurrence.  The advantages here are construction simplicity and guaranteed smooth models due to their being prescriptive (not inversion based).  The disadvantages are difficulties with respect to representing multifault ruptures, computing the implied attributes noted above, and including a broader set of data constraints (brokering their potential inconsistencies and understanding the consequent null space). Note that our calling these "classic" should not be interpreted pejoratively, as we acknowledge that a simpler or less realistic model can be more useful in some applications.
	The following are treated as classic fault sources in the 2023 NSHM update: Alaska faults, the New Madrid fault system, and the Cascadia and Aleutian subduction zones (although we intend to try fault system solution representations for each of these as soon as possible).  It is worth noting that New Zealand has utilized inversion-based fault system solutions for all faults, including subduction zones, in their 2023 NSHM update (Gerstenberger et al., 2022).

[bookmark: _Toc127506043]Western U.S. Classic Fault Sources

	All WUS fault-based sources (excluding Cascadia) are now represented as fault system solutions described above, whereas here we describe previous implementations for comparison purposes. In NSHM14/18 western U.S. faults outside California had two main source types (logic-tree branches): 

1) A full-fault, "characteristic" rupture represented with a Gaussian MFD, where the mean magnitude is computed from the Wells and Coppersmith (1994) magnitude-length relationship, the standard deviation is assumed to be 0.12, and the Gaussian is truncated at +/- two standard deviations.  Mean magnitude is capped at M 7.5, in which case the rupture is floated down the fault (uniform distribution) with a single magnitude and length from the same Wells and Coppersmith (1994) relationship.  Event rates are scaled to match the target fault slip rate (generally assuming a lower seis depth of 15km).
2) A Gutenberg Richter (GR) MFD with a minimum magnitude of 6.5, a b-value of 0.9, a maximum magnitude implied by the Wells and Coppersmith (1994) magnitude-length relationship, and event rates that match the target slip rate.  Smaller ruptures are floated down the fault (uniform distribution), with length computed from magnitude using same Wells and Coppersmith (1994) relationship.  Maximum magnitude is capped at M 7.5 here too.  Depth to top of rupture is magnitude dependent, being zero at largest magnitudes and with different options & weights being applied at lower magnitudes (0, 2, 4, and 6 km at M 6.5 with equal weights?); this is considered aleatory variability.

	In both models some epistemic uncertainty is also applied to the maximum or mean magnitude (+/-0.2 with a weight of 0.2 on these outer branches and 0.6 for the central one).  Fault dip for reverse and normal faults is generally assumed to be 35°, 50°, or 65° with branch weights of 0.2, 0.6, and 0.2, although note that the dip variability does not influence magnitudes or event rates.
	A few faults receive further special treatment as follows:1) historic magnitudes are used for the characteristic model if available; 2) if slip rate is unavailable, then any paleoseismic event rate constraint is applied to the characteristic magnitude and the implied moment rate is applied to the GR model; 3) if max or mean magnitude is ≤ 6.7 the associated epistemic uncertainty is dropped; and 4) some speculative sources (e.g., offshore) and are further assigned a "probability of activity".
	As discussed in the previous section, we have attempted to capture the essence of these models in our fault system solution framework presented above.  Potentially important implementation differences include: 1) fixed minimum magnitude here (M 6.5) versus scaling-relationship and down-dip dependent values above; 2) a single magnitude-length scaling relationship used here (plus epistemic uncertainty added for maximum and mean magnitudes) whereas a range of magnitude-area and slip-length scaling relationships utilized above; 3) a range of depth to top of rupture values are assigned for smaller floating events here (and not considered above because they are "supra-seismogenic" ruptures; such variation could be applied in GMMs); 4) effective along-strike discretization of floating ruptures is finer here (1 km) and coarser above (1/2 the down dip width).  With respect magnitude-length vs magnitude-area scaling relationships, the questions are whether shallower dipping faults should have larger maximum magnitudes than vertically dipping faults (all other things being equal) and how well down-dip widths are constrained given uncertainties in lower seismogenic depths.  Our rules for supra-seismogenic ruptures above mean that the minimum magnitude on some shallow dipping faults can be up to M 7. 
[bookmark: _Toc127506044]CEUS Fault Sources

	These sources are described by Shumway et al. (2023; link to report here), who also quantify the implied changes in mean hazard.  The defining characteristic of all CEUS fault-based sources (including the fault-zone sources described below) is the Repeating Large Magnitude Earthquake (RLME) hypothesis introduced by the CEUS SSCn (2012), which assumes that all events that occur on one of these sources will have a very similar magnitude (within 0.25 magnitude units with uniform distribution as specified by CEUS SSCn (2012), but with no such aleatory variability as applied in NSHM14/18).  This assumption, based on the characteristic MFD of Youngs and Coppersmith (1985), is convenient in that whatever magnitude is inferred for any previous event is that expected for all future events.  Epistemic uncertainty is acknowledged, however, for what this characteristic magnitude is, with either fault surface area or fault-zone length providing an upper bound, or the spatial extent of paleoliquifaction deposits being used to constrain a reasonable range.
	The mean rate of the RLME source is either inferred by moment balancing if a slip-rate estimate is available, or it is inferred from an observation of N events having occurred in some timespan T (e.g., from paleoliquefaction deposits).  In the latter case, a probability density function for the mean rate of the RLME is computed from N and T assuming a Poisson process (reflecting the relative likelihood that each rate is consistent with the observation), and 5 points are typically chosen from this distribution as event-rate branches for the logic tree.  Epistemic uncertainties on the timespan (T) are also often represented using a uniform distribution over a range of values, and sometimes alternative sets of N and T are utilized to represent whether the future will be more consistent with any quiet versus more active time periods apparent in the paleo record (treated as additional epistemic uncertainty).  Chapter 5 of the CEUS SSCn (2012) report describes all this quite well.
	Further complications arise when faults sources are deemed capable of rupturing together.  The Meers, Commerce, and Eastern Margin (north) faults are all considered isolated, and only the Meers has an influential change since NSHM14/18 (hazard is increased to the west because the fault was extended in this direction; magnitudes and rates were unchanged).  The Eastern Rift Margin (south) fault always ruptures either with Crittenden County or with the Meeman–Shelby fault (branch weights of 0.6 and 0.4, respectively), and no changes in hazard are implied since NSHM14/18 (in spite of these going from a zone to an explicit fault representation; magnitudes and rate were unchanged).  
	The remaining faults (Charleston Uplift, New Madrid West, New Madrid North, Reelfoot, Bootheel, and Axial) are all in the heart of the New Madrid, MO area, and have been modeled as capable of rupturing alone or together in a handful of alternative scenarios.  One set of branches honors the scenarios defined by CEUS SSCn (2012) and another set represents a USGS alternative that utilizes a simplified "lightning bolt" fault model (see Figures 22 and 23 of Petersen et al. (2014)).  On any given branch there are no more than 3 different ruptures represented among all these faults, and each of these ruptures is assumed to recur with the exact same magnitude.  The CEUS SSCn (2012) set of branches include temporal variability in the long-term rate of ruptures (in vs out of a "cluster sequence") whereas the USGS model has a branch where ruptures come in sets (doublets or triplets) versus their being temporally independent, the distinction of which is accounted for in hazard calculations.  There are other branches representing epistemic uncertainties in rates and magnitudes, resulting in a total of 640 logic tree branches (CONFIRM THIS NUMBER) for this set of faults.  The only changes since NSHM14/18 involve fault geometry modifications and no changes in rupture rates or magnitudes, with the biggest change in hazard being an increase where the Axial fault is extended to the southwest (Shumway et al., 2023; link to report here).  
	In short, the only consequential changes from a hazard standpoint are where the Meers and Axial faults have been extended.  Note also that none of these sources have been updated to utilize the set of scaling relationships recommended by Shaw (2023; resubmission available here) for stable continental regions.  While all models are a mere approximation of the system, one can ask whether the representations utilized here represent best available science.  Perhaps most debatable is the RLME assumption that all ruptures for a given source will have very similar magnitudes (as opposed to a wider range of aleatory variability).  Limiting every branch for the five-fault cluster near New Madrid to only three different ruptures seems questionable as well.  At the very least these assumptions are philosophically inconsistent with how we are handling faults in the western US.
	A relatively straightforward modification would be to replace the single-magnitude assumption with a wider range of magnitudes by using a Gutenberg-Richter distribution with alternative branches for the b-value (e.g., between 0 and 1 as applied in western US, or even beyond this range if deemed appropriate).  Also, the map of faults near New Madrid (Figure 6b) implies that nearly all are plausibly interconnected, which begs the question of whether an inversion fault-system solution is called for.  The fact that several of these faults lack slip-rate estimates is not a problem, as there is no such requirement for these in the inversion.  The bigger question is how to interpret the N events in timespan (T) constraints provided by paleoliquefaction studies, as there is potential ambiguity in terms of what ruptures could cause each such observation.  Assuming it is an occurrence on the nearest fault is one approach (and consistent with present assumptions), but then there is also the question of whether such observations at different locations represent any of the same events.  We are actively exploring these questions.
	Another challenge is the wide heterogeneity in the number of logic tree branches among these fault sources, making a systematic hazard-map assessment of the influence of each a near impossibility.  One might argue that the current models go overboard with respect to epistemic uncertainties (especially compared to the very limited aleatory variability).  This does not matter much if you are only interested in mean hazard (for which epistemic uncertainties can be treated as aleatory), but one of our explicit goals is a better quantification of epistemic uncertainties with respect to hazard and risk metrics, which we also need to inform where efforts should be placed to improve the models.  It would therefore be helpful to reduce the branches for all these sources to a common, necessary, and sufficient set.

[bookmark: _Toc127506045]Cascadia Subduction Zone

	The Cascadia subduction zone model used in NSHM14/18, defined by Petersen et al. (2014) and Frankel et al. (2015), is composed of two additive (aleatory) components: full subduction-zone ruptures every 526 years plus some M≥8 partial ruptures.  Logic tree branches were included for the following: whether M≥8 ruptures are segmented or unsegmented (floating); the b-value assumed for unsegmented ruptures (0 or 1); whether or not M≥8 ruptures occur on the northern end of the subduction zone; and whether the overall recurrence interval of M≥8 events is set from turbidites (every 500 years according to Goldfinger et al. (2012)), onshore geology (every 1000 years based on the tsunami deposits and subsidence data of Kelsey et al. (2005) and Nelson et al. (2006)), or double the latter (2000 years, based on expert opinion that some inferred earthquakes might not be subduction events).  There were also three branches for down-dip rupture extent and three scaling relationships, leading to 9 different magnitudes estimates for full and segmented ruptures.
	Updates for the Cascadia subduction zone, presented by Frankel and Petersen (2023, available here for now), are based on new paleoseismic data and discussions at a virtual workshop in February 2021.    These include a new segmentation-model branch proposed by Goldfinger et al. (2017), which allows ruptures to extend further north, and note that the previous segmentation model from Goldfinger et al. (2012) is also retained.  The branch with a 2000-year recurrence interval for M≥8 events was replaced with two others based on interpretations of on-shore data by Nelson et al. (2021): an 800-year recurrence interval based on data going back 1600 years, and a 2300-year recurrence interval based on the last 7000 years.
	A notable modification is that the full subduction-zone rupture branch has been split into two aleatory parts: 90% of the time this occurs as a full rupture (as before), but 10% of the time is occurs as a temporal cluster of M8 events filling the entire length in a matter of decades.  The relative frequency of the latter is low due to lack of evidence in turbidite data and that such events would presumably not satisfy plate-boundary slip rates (IMPLEMENTED MODEL HAS A BROADER RANGE OF MAGNITUDES FOR THESE CLUSTER EVENTS (NOT JUST M8); WE ALSO NEED TO DISCUSS WHETHER THESE ARE WORTH KEEPING).  Another notable addition is a branch with a time-dependent, renewal-model probability for the full subduction-zone ruptures based on a lognormal distribution with a recurrence interval of 529 years, a coefficient of variation of 0.5, and the last event having occurred in 1700; this yields a probability of 12.5% rather than the time-independent value of 9%.  Questions remain as to whether this is applicable to the temporal cluster of M8 events (would these smaller events really reset the system), and whether this time dependence should be applied before doing so with other faults that are late in their cycles (e.g., the Hayward fault and the Coachella section of the San Andreas fault).  No changes were made to other logic tree branches, including the scaling relationship used to compute magnitudes (and it remains to be seen whether using those recommended by Shaw (2023) would be influential). Despite these enhancements, implied changes in mean hazard are relatively minor (less than 10%, as shown below).
[bookmark: _Toc127506046]Fault Source Zones

	This source type is utilized where faulting is clearly present, or suspected, but dispersed in that a single dominant fault is not clearly identifiable.  These sources are defined with a geographic polygon and an associated MFD, where the latter is defined to satisfy any event-rate, slip-rate, or moment-rate constraints.  Ruptures are typically assumed to have a uniform distribution inside the polygon, generally modeled as gridded seismicity, but where a fixed focal mechanism is usually applied based on the observed faulting.  Rupture dimensions are computed from magnitude using an assumed scaling relationship and an assumed down-dip width, and ruptures are centered on the grid point.  The USGS generally models these as "leaky" boundaries, meaning ruptures can extent outside the polygon if they nucleate near the edge.

[bookmark: _Toc127506047]CEUS Fault Zone Sources

	As described in Jobe et al. (2022) and Shumway et al. (2023, link to report here) five new fault zone sources have been added (Joiner Ridge, Crowley's Ridge (south), Crowley's Ridge (west), Saline River, and Central Virginia), four are unchanged (Wabash Valley, Charleston Charlevoix, and Marianna), and five that were zones in NSHM14/18 are now explicit faults (discussed above).  As discussed in the "2018 to 2023 Hazard Changes" section below, the main consequence is that hazard has increased where the new fault zone sources have been added (also shown in Shumway et al. (2023, link to report here).
	Again, the RLME assumption is utilized here (all occurrences of a source are the same magnitude) and rates are determined by either moment balancing with slip rate or inferred from N events in timespan T (described above).  Maximum magnitude is generally determined from the polygon length in the strike direction, using an assumed scaling relationship and down-dip width. (15 km here).  The Wells and Coppersmith (1994) magnitude-length relationship (for unknown rake) has been used in the past, but the new fault zone sources added here utilize the average of the three Shaw (2023; resubmission available here) relationships for stable continental faults (which are equivalent to moving each of the three Shaw (2023) recommended plate-boundary curves shown in Figure 10 up by 0.1 magnitude units).  Epistemic uncertainty in the RLME magnitude is generally represented between magnitude 6.5 and the maximum magnitude, discretized at 0.25 increments.  
	Charleston has three different sized polygons and Central Virginia has two, reflecting additional epistemic uncertainty for these sources.  The larger polygon for the larger Central Virginia source implies a maximum magnitude of about 7.25, and the observational constraint of one event in 1800 to 2800 years implies a mean recurrence interval of 1333 years.  Tish Tuttle, the scientist who provided the paleoliquefaction data, expressed concern that the spatial extent of liquefaction was not consistent with such a large event, so the maximum magnitude was reduced to 6.5 (and the minimum magnitude was reduced to 6.0 so the branch options are 6.0, 6.25, and 6.5).  This is a consequence of the RLME single-sized event assumption (what's implied for the last event is all you should ever see), and it might also be questionable to apply the 1333-year recurrence interval to M 7.25 events anyway (a moment rate that would imply more topographic relief?).  But are we really sure that events larger than M 6.5 cannot occur in this zone, especially if the polygon is large enough to accommodate them?  Again, a rational alternative would be model this with a Gutenberg-Richter distribution between M 6.5 and 7.25, and constrained so the total rate of events implies a recurrence interval of 1333 years; applying a b-value of 1.0 would make the M≥6.5 events feasible but relatively rare.  In terms of hazard uncertainty quantification, it would also be good to reduce the number of logic-tree branches for these sources to a common, necessary, and sufficient set as well.
	
[bookmark: _Toc127506048]Western U.S. Fault Zone Sources

The following Western U.S. faults fall in this category as well (Hatem et al., 2022a), broken out by state and shown in Figure 12:
· Washington:
· Seattle
· Southern Whidbey Island
· California:
· Big Valley
· Pondosa
· South Mono
· Susanville-Eagle Lake
· Nevada:
· East Carson Valley
· New Mexico:
· Llano de Albuquerque
· Llano de Manzano
· San Felipe

These were also assigned proxy faults, the latter of which were uses in the fault system solutions above (treated the same as any other fault).  Hazard tests show general insensitivity to whether a source is modeled as an explicit fault or a fault zone given the same MFD (rupture magnitudes and rates).  The more consequential influence is whether these faults can co-rupture with neighbors, which is only currently supported when proxy faults are utilized.  Thus, the "Classic" inversion-based solution should produce the same hazard as treating these as source zones, and sensitivity tests have found that removing these particular proxy faults from fault-system inversions does not change implied hazard significantly.

[bookmark: _Toc127506049]Gridded Seismicity Sources 

	Gridded seismicity or “background” sources represent the seismicity that is not captured by explicitly modeled faults.  These are presently composed of: 1) a polygon defining the region and a spatial discretization interval (0.1 degrees here) to define the grid cells; 2) a spatial probability distribution defining the relative rate of earthquake nucleation within each grid cell; 3) a Total M≥5 Rate and b-value for the region; 4) an assumed maximum magnitude for the region; 5) a probability distribution of focal mechanisms for each grid cell; and 6) rules for converting a nucleation point into a finite rupture surface.  Steps are also often taken to ensure that gridded seismicity sources are not double counted with fault-based sources.  We develop these models separately for the WUS and CEUS Collection regions shown in Figure 3, as well as for deeper events (>35 km) near the Cascadia subduction zone which are processed separately. 
[bookmark: _Toc127506050]Earthquake Catalog Updates

	The CONUS earthquake catalog has been updated through 2021 using the methodology of Mueller (2019), with induced seismicity being removed in the zones identified in the 2018 NSHM (Petersen et al., 2020).  THIS CATALOG AND INDUCED ZONES MAY BE UPDATED BEFORE FINALIZING THIS MODEL.

[bookmark: _Toc127506051]Total Regional Rate and b-value Estimates

	Following UCERF3, one improvement here is quantification of Total M≥5 Rate and b-value estimates for various regions, provided by Llenos and Michael (2023, brief description for now here). More specifically, they provided three rate and b-value pairs, representing the mean and 95% confidence bounds, for the WUS and CEUS collection regions, as well as for the deep Cascadia seismicity (Table 6).  The regional b-values were inferred using the recently developed "B-Positive" technique of van der Elst (2021).  ADD MORE DESCRIPTION?
	For model comparison purposes, we apportioned their rates to sub-regions using the branch-averaged spatial PDF, and uncertainties for the associated Total M≥5 Rate are expanded based on the square-root of the implied data reduction.  We refer to the result as the "observed" or "target" MFD for each region.

Table 6.  Total M≥5 Rate (per yr), b-value 
	Region
	Mean
	Mean-2s
	Mean+2s

	WUS Collection
	12.0, 0.84
	11.3, 0.88
	13.2, 0.80

	CEUS Collection
	0.43, 0.94
	0.37, 0.98
	0.51, 0.90

	Deep Cascadia
	0.12, 0.71
	0.091, 0.87
	0.27, 0.55




[bookmark: _Toc127506052]Gridded Seismicity Spatial PDFs

	Inferring the long-term spatial probability density function of seismicity rates requires catalog declustering, otherwise rates will be biased high where larger events have produced aftershocks and biased low in areas that were randomly spared such events (e.g., Frankel, 1995).  Lacking a perfect model for aftershock occurrence, a variety of catalog declustering algorithms have been developed.  NSHM14/18 and other previous USGS models generally utilized the Gardner and Knopoff (1974) algorithm.  A major improvement for 2023, as provided by Llenos (2023, link here for now), has been the addition of two other declustering algorithms as alternative logic-tree branches: Reasenberg (1985), which was also utilized in previous Hawaii models (Klein et al, 2001; Petersen et al, 2021) and the Nearest Neighbor approach of Zaliapin and Ben-Zion (2020).  
	For each declustered catalog, and considering various magnitude of completeness models, the number of events is tallied in each grid cell and the result is spatially smoothed using the same two approaches utilized in NSHM14/18, both based on a 2D Gaussian kernel.  One uses a fixed smoothing width (the standard deviation of the Gaussian), with 50 km being applied in WUS and 50 or 70 km being applied in CEUS (depending on assumed minimum magnitude of completeness).  The other is an adaptive smoothing width where the distance is defined by Nth nearest earthquake (N is 8 and  in WUS and CEUS, respectively).  In areas where rates are unrealistically low using the fixed smoothing, floor rates are specified inside associated polygons; these persist in CEUS, but those applied previously in WUS are no longer utilized (see Llenos (2023) for full details, link here for now).  
	Each of the three declustering and two spatial smoothing algorithms are given equal weight (Figure 2).  The branch-averaged smoothed seismicity map is shown in Figure 13 and the ratio of each branch to this average is shown in Figure 14.  The discontinuity at longitude -104°W is a result of the different processing in each region.  These results imply that differences between fixed and adaptive smoothing are generally greater than between the different smoothing algorithms.  See Llenos (2023, link here for now) for equivalent results for the deep seismicity near Cascadia, for which only the fixed smoothing option has been utilized.
[bookmark: _Toc127506053]Maximum Magnitudes, Focal Mechanisms, and Finite Rupture Surfaces

	Three branches are utilized for gridded seismicity maximum magnitude (), with the options and weights for WUS being adopted from UCERF3 (Table 3 & Figure 2).  The CEUS  options are adopted from NSHM14/18 (DESCRIBE THESE?). For now, the spatial distribution of relative focal mechanism likelihoods remains unchanged compared to NSHM14/18.  For example, ruptures in Pacific Northwest are assumed 50-percent strike slip and 50-percent reverse, ruptures in Intermountain West are assumed 50-percent strike slip and 50-percent normal, CEUS events are 100-percent strike slip, and the UCERF3 region has the spatial variability defined originally Petersen et al. (2008).  A random strike is assumed and rupture lengths are determined for M≥6 events using the Wells and Coppersmith (1994) magnitude-length relationship (for unknown rake).

[bookmark: _Toc127506054]Merging With Other Source Models

	In regions with numerous explicitly modeled faults, or perhaps near any individual fault, it can be important to avoid double-counting earthquakes.  In other words, the sum of the source model MFDs should be consistent with the total regional MFD estimate, and ensuring or testing this is precisely why we added Total M≥5 Rate and b-value estimates for the various sub-regions.
	Each Western U.S. fault system solution has an implied total MFD (for supra-seismogenic on-fault events).  Following UCERF3, we define the total gridded-seismicity MFD as the total regional target minus the total fault-system-solution MFD. More specifically, we construct a total target Gutenberg-Richter MFD from the regional b-value and the chosen Total M≥5 Rate branch, truncated at the chosen gridded seismicity  branch; the gridded seismicity MFD is this target minus the total fault-system-solution MFD, where any consequent negative values are set to zero (e.g., above , or where the fault-system-solution MFD exceeds the regional target (the so-called bulge)).
	We could apply this consequent gridded-seismicity MFD across the region according to the smoothed-seismicity spatial PDF (such that each grid cell has the same MFD shape).  However, this might still be considered double counting near faults.  Past models have avoided this by capping the maximum magnitude of gridded seismicity near faults to be just below the minimum magnitude on the associated fault. This is typically applied within 12 km of the fault trace (although this buffer was also dip dependent in UCERF3).  The assumption is that the fault represents a proxy for all supra-seismogenic magnitudes in that zone, and that gridded seismicity contributes no such events in this area.
	This representation turned out to be problematic when adding a spatiotemporal clustering model to UCERF3 (Field et al., 2017), as it implied unrealistic MFD shape transitions over the finer scales needed for such modeling.  To produce a smoother transition between faults and gridded seismicity, we assume that fault nucleation rates decay linearly with distance out to some specified maximum distance (12 km here), and that gridded seismicity rates have the opposite linear trend near faults.  This means that large gridded-seismicity events can occur within 12 km of a fault, but with reduced rates that trend linearly toward zero at the fault surface.  This linear partitioning is done in 3D, so dipping faults are handled more elegantly than in the past.  The bookkeeping, which is achieved by subdividing grid cells into 3D “cubes”, gets somewhat complicated due to variable supra-seismogenic minimum magnitudes across the fault system, plus the fact that we account for the average depth dependence of earthquake nucleation (see Field et al. (2017) for details).
	There is no attempt to avoid double counting in CEUS because gridded seismicity sources are relatively low and do not add much in the way of hazard (and if they did, then the fault-based sources might not be value added).
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[bookmark: _Toc233101631][bookmark: _Toc127506055]Western U.S. Results (excluding Cascadia)

	Each WUS logic-tree branch has 582,004 fault-based ruptures, there are 2250 different branches for the fault system solutions, and 121,500 total branches when the latter are combined with the set of gridded-seismicity options. We therefore must resort to aggregate metrics when interpreting results.  To this end, an extensive set of web-based reports are available as part of the Supplementary Data (link to landing page here), including results for the following:

· Full logic-tree solutions
· Branch-specific solutions (sensitivity tests)
· Hazard Maps (& comparisons with NSHM14/18)
· Hazard Curves at Sites (& comparisons with NSHM14/18)

	These reports embody an immense number of plots and diagnostics (virtually everything that has been envisioned and requested during analysis and review, plus this is a living archive where things can be added upon request).  We focus on a relatively small but representative subset of results here. 
[bookmark: _Toc127506056]Model Fits to Data Constraints

	Here we summarize how well the WUS models fits the data. It is important to recognize that, given the wide range of constraints (Table 3), it is not possible to fit all data perfectly due to potential inconsistencies between constraints.  For example, a paleoseismic recurrence interval may be physically incompatible with an assigned slip rate, or slip-rate variations in the system may be incompatible with the target nucleation MFD on a fault section.  This means that scatter should be expected between target constraints and those implied by final models.  Note also that this scatter is not due to limited simulated annealing runtime (we've confirmed that longer runs do not further reduce misfits).  See Milner and Field (2023, available here) for sensitivity tests on this and other potentially important inversion attributes.

[bookmark: _Toc223574850][bookmark: _Toc127506057]Regional MFDs

	The observed target and model implied cumulative MFDs for the three WUS analysis regions are shown in Figure 15, including the contributions from faults (dashed), gridded seismicity (dotted), and the combined total (solid).  Comparisons to NSHM14/18 implied MFDs are also shown with blue lines.    For the UCERF (Greater CA) region (Figure 15a), the mean rate of M≥5 events implied by the new model is 7.28 per year, in agreement with the new branch-average target of 7.24, but this is a factor of 1.7 greater than that of NSHM14/18 (4.26 events per year). This discrepancy is seemingly inconsistent with the fact that the total branch-averaged M≥5 rate dropped from 8.28 in UCERF3 to 7.24 here.  However, the NSHM14/18 rates in Figure 15a also reflect a declustered model, which effectively reduced the M≥5 rates in NSHM14/18 by a factor of 1.94 (compared to the un-declustered mean UCERF3 target).  In other words, most of the change in the M≥5 rate comes from the inclusion of aftershocks, which also explains why the NSHM14/18 value is near the lower 95% confidence bound of the new model.  This difference does not propagate proportionately to larger magnitudes because the total target b-value has also changed, from 1.0 in UCERF3 to 0.84 here, plus the NSHM14/18 declustering also created a magnitude dependent b-value below M 6.5.  The rate of M≥7.5 gridded seismicity events has increased by more than an order of magnitude, owing to an increase in overall rate, a lowering of the regional target b-value, and changes in how the on- versus off-fault seismicity is defined (the new model essentially assumes zero MFD roll off up to the maximum magnitude for gridded seismicity).  Changes in fault-based supra-seismogenic rupture rates are relatively small (<30%).  The red shaded areas in Figure 15a show the range of total MFDs spanned by the new logic tree branches (for various percentiles, as labeled), the spread of which mimics, as expected, the observed rate uncertainties at lower magnitudes (and with some small fraction of models falling outside the observed 95% confidence bounds).  MFD plots showing the epistemic uncertainties for faults and gridded seismicity, separately, are available in the Electronic Supplements (here and here, respectively). The latter reveals that gridded seismicity rates can be quite low or even zero at intermediate magnitudes on some branches.  This occurs when fault system solutions approach or exceed the target MFD, producing a final total MFD that over-shoots the target by the amount of exceedance (because gridded-seismicity rates cannot be negative).  As demonstrated below, this is a problem with the more segmented and higher b-value fault system solutions.  The extent to which consequent gridded seismicity rates are inconsistent with observed "off-fault" events could be uses as a basis for down-weighting such models (something we have not yet explored).  
	MFDs for the Pacific Northwest region are shown in Figure 15b.  Both the NSHM14/18 and new model match the target M≥5 rate of about 0.28 events per years.  The contribution from faults has increased since NSHM14/18, which is consistent with faults having been added.  The new average MFD for faults exceeds the target by up to ~40% between M 6.3 and 7.3, which we will see is more of a problem with the more segmented models, but results are well within the confidence bounds.  MFDs for the Intermountain West region are shown in Figure 15c.  Total M≥5 rates have increased from 1.5 to 2.1 events per year since the NSHM14/18 model.  Changes are otherwise relatively small for both faults and gridded seismicity.  The Electronic Supplements include data files for extracting numerical values, plus equivalent results for logic-tree subsets and for smaller regions near Los Angeles, San Francisco, the Puget Lowland, and the New Madrid seismic zone (the green rectangles in Figure 3). 
	Figure 16a shows the influence of Supra-seismogenic b-value branches on average fault-system solution MFDs for the entire WUS, and Figure 16b shows the same for the segmentation branches.  Both plots exhibit expected behavior (higher rates at lower magnitudes for more segmented and higher b-value branches, and vice versa at higher magnitudes).  This indicates that these inversion constraints are working exactly as intended, at least on average throughout the system.  Note that the b-value=0 branch produces, when all combined, a b-value of about 0.8 between M 6.5 and 8.0, which is due to variable maximum magnitudes and slip rates throughout the system, as well as  the segmentation constraints. Note also that the Classic segmentation model has the highest rates at M≤7.3 and is somewhat of an outlier (e.g., in terms of pulling the overall mean MFD above the median and making it about equal to that of the high segmentation branch).  Consequently, this is also the most problematic branch in terms of producing fault-system MFDs that approach or exceed the regional target, which again leads to low gridded seismicity rates at intermediate magnitudes and perhaps an MFD over prediction.
    
[bookmark: _Toc223574851][bookmark: _Toc127506058]Slip Rates
[bookmark: _Toc223574852]
	Figure 17 shows a scatter plot of mean solution slip rates versus the mean target value for all 5,577 fault subsections.  Again, this reveals that the inversion is working properly, with discrepancies reflecting inconsistency with other constraints.  For example, the largest discrepancy is on the Green Valley fault, where the mean solution slip rate is up to a factor of 4.6 above the target due to an inconsistent paleoseismic recurrence interval (plus a significant slip-rate reduction due to creep).  A map view of these misfits, plus a variety of other slip-rate plots are available in the Electronic Supplements (here).
	Note that while each deformation model generally provided slip-rate uncertainty estimates, these were not used to weight the inversion for several reasons.  One is that it is not clear exactly what these uncertainties represent (just data misfits or also some representation of any null space?), especially in the absence of covariance estimates.  It is also not clear whether uncertainties were handled consistently between models. A more practical reason is that in areas with high uncertainties (relative to slip rates, like in the Intermountain West), the inversion will tent to over- or under-fit all slip rates, and such a systematic bias is unlikely to be correct (and violates likely correlation between neighboring slip rates).  Consequently, we assigned uncertainties of 10% (one sigma values) in the inversion, meaning we generally over fit the slip-rate data.  This issue was discussed originally in Field et al (2020) and more specifically in the context of this model in Milner and Field (2023).  The latter also has a more detailed discussion solution misfits (including z-scores with respect to the original slip rate uncertainty estimates; their Table 3).
	The linear-linear version of Figure 17 (available here) implies a systematic under-fitting at higher slip rates (≥20 mm/year).  The map version of this (available here) reveals the following faults to be the main culprits: Cerro Prieto, Imperial, San Andreas Mojave (south), San Andreas (North Coast), Mendocino, and some parts of the San Andreas (Creeping), the latter of which has the greatest outliers in both directions (a clickable, web-based version of this map is available here).  The reasons for these under-fits vary, but they are generally due to inconsistent paleoseismic data or connectivity issues (preventing a target MFD from being satisfied).  We are still studying these discrepancies; adjustments can be made to fit these slip rates better (e.g., by reducing the assumed 10% uncertainty on higher slip-rate faults).

[bookmark: _Toc127506059]Paleo Event Rates
 
	A scatter plot depicting paleo event-rate misfits is shown in Figure 18a for the branch-averaged model, as well as for each Paleoseismic Data Fit logic-tree branch.  As expected, the scatter is greatest for the Under-Fit branch (Figure 18b) and smallest for the Over-Fit branch (Figure 18d).  The most significant discrepancy occurs on the Little Salmon (onshore) fault, for which the paleoseismic target rate is 1 event every ~10,000 years (with a 1-sigma uncertainty of 10% on the mean rate), whereas the branch-average solution rate is 1 event every ~1,800 years.  Again, slip rate is the inconsistent constraint here, with the inversion successfully brokering a compromise that depends on our relative confidence in the paleo data (the value of the Paleoseismic Data Fit branch).  
	A map view of the misfits shown in Figure 18a, as well as tabulated values for each paleoseismic site, are also given in the Electronic Supplements (e.g., here for the branch-averaged solution).  Further details of such misfits, including along fault trends, can be seen in the Electronic Supplements for each parent fault section (like this one for the Little Salmon (onshore) fault).  The special faults listed in Table 5, many of which have multiple paleoseismic constraints, also have dedicated reports in the Electronic Supplements (e.g., here for the branch-averaged solution).

[bookmark: _Toc127506060]Fits to Other Inversion Constraints

[bookmark: _Toc127506061]Supra-seismogenic b-values
 
	Recall that the supra-seismogenic b-value constraint is simply a mechanism to sweep over a range of viable models (between the minimum- and maximum-rate models), and we use it to compute a total nucleation rate constraint for each fault subsection.  The logic tree defines target supra-seismogenic b-values between 0 and 1 with uniform weights (Figure 2).  These get modified for consistency with the chosen segmentation model, as discussed above, which generally increases the target b-value due to the consequent MFD roll-off at higher magnitudes.  Furthermore, the ability of the inversion to match target values depends on other factors, including nearby paleoseismic event-rate constraints and slip-rate heterogeneity (e.g., a greater proportion of smaller events will be needed where slip rates vary over smaller spatial scales). All of this produces significant variability among post-inversion supra-seismogenic b-values, making their evaluation complicated.  We already saw from Figure 16a that, on average over the system, these b-values constraints are having the intended effect, but are there individual faults where this is not the case? Because the whole point of this constraint is to vary the total rate of events on each fault, we check for this by comparing average fault participation rates among these branches (participation indicates the frequency at which events pass by a point on a fault, even if the events nucleated some distance away).  To this end, Figure 19a shows M≥6 fault participation rates for the b-value=0 branch, and Figure 19b shows those for the b-value=1 branch, both normalized by equivalent average rates from the full logic tree.  As expected, the M≥6 participation rates for b-value=0 are lower than average across the region, and those for b-value=1 are relatively high, and the reverse occurs at higher (M≥7.5) magnitudes (which must be true because moment is balanced).  This gives us confidence that this constraint is indeed allowing us to map out a wider range of models than considered in the UCERF3 inversion.
[bookmark: _Toc127506062]Segmentation Constraints

	The distance-dependence of segmentation (i.e., the relative passthrough rate among neighboring faults as a function of separation) is shown in Figure 20 for the branch-averaged model, as well as for each segmentation branch.  The smaller circles in each plot are values for each connection between faults in the fault system, the larger circles are mean values as a function of distance, and larger squares are median values. Recall that this is an inequality constraint, such that all passthrough rates must fall below the target line for the Low, Mid, and High branches (and mean results are consequently below the lines as well, but with about the same distance trend as the target).  As expected, the no segmentation (None) branch shows almost no trend with distance, and the Classic branch shows relatively few connections (only within the Special faults; Table 5).  Again, these plots give us confidence that the inversion is working as intended.
	The Electronic Supplements contain a variety of other plots relating to segmentation, including a map view of fractional passthrough rates (e.g., here for the branch-averaged solution).  The pages for each parent fault section also include a map showing the frequency of co-ruptures with neighboring faults, as well as examples of individual ruptures for a range of likelihoods including the most extreme case (e.g., here and here, respectively, for the Cucamonga fault).
[bookmark: _Toc127506063]Fits To Data Not Used in the Inversion

	Figure 21 shows how the cumulative frequency distribution of rupture length implied by the model compares to the Wells (2013) global compilation of 258 observed earthquakes (curves have been normalized for comparison purposes). The agreement for WUS (Figure 21a) is quite good up to about 450 km, beyond for which there is a discrepancy due to a lack of observation of such events.  The latter implies there might be a physical upper bound on rupture length, which would be an easy constraint to add to the model.
	Two salient questions are whether the Wells (2013) data set represents an unbiased global sample, and whether it is applicable to WUS.  Another question is whether the lack of observations above 450 km is a sampling issue with respect to rare events; in other words, can we reject our model by demonstrating that it implies a significant probability of having seen such an event by now?  
	How much can we suppress long ruptures by simply preventing them from traversing the creeping section of San Andreas fault? The Classic branch does not allow such ruptures, implying that ruptures confined to the northern and southern San Andreas fault are less than 680 km in length (the maximum extent of the magenta line in Figure 21a).  Furthermore, the High segmentation branch does not allow such rupture either, yet it still has a rupture exceeding 800 km every 1250 years (orange line), implying alternative routes for such events to take.  For the branch-averaged model (thick black line), 77% of ≥800 km length ruptures traverse the creeping section, meaning 23% take a different path.
	   Figure 21b shows the same result except that California ruptures are excluded, revealing a steeper trend, which may or may not be a good thing (we do not yet know).  Both plots imply, once again, that the Classic segmentation branch is an outlier.  The bottom line is that, until more definitive answers are available, it would probably be prudent to add some rupture length limit to the more segmented models (WE ARE EXPLORING THIS DURING THE ONGOING REVIEW).
	We also endeavored to utilize the detailed surface rupture observations and statistical analyses of Biasi and Wesnousky (2016, 2017).  For example, for strike slip faults they found that "steps of 1km or greater will be effective in stopping rupture about 46% of the time" (Biasi and Wesnousky, 2016).  However, these are based on high resolution surface rupture maps that were obtained soon after large events, so it is not obvious how to incorporate these results.  For instance, it is not clear what these surface features tell us about rupture connectivity at depth (where the dynamics play out).  Our fault model is also highly simplified compared to the geologic maps they are derived from.  Consequently, were any one of the fault ruptures in our model to occur, we do not expect surface rupture features to look anything like our simplified fault traces.  We have therefore, thus far, been unsuccessful in utilizing the Biasi and Wesnousky (2016, 2017) studies to evaluate our model, but future efforts may be more fruitful.
[bookmark: _Toc213837187][bookmark: _Toc127506064]Hazard Related Metrics 

This section discussed the implications of the model in terms of various hazard related metrics. 
[bookmark: _Toc223574856][bookmark: _Toc127506065]Fault Section Participation MFDs

	Hazard at a site is often dominated by one or more nearby faults, so a particularly relevant metric is the participation MFD, which quantifies the rate at which ruptures involve (or pass by) each fault section, even if they nucleate elsewhere.  It is not practical to look at the participation MFDs for all 5,577 fault subsections, so we take two approaches here.  One is to plot subsection participation rates above a specified magnitude threshold in map view, examples of which are shown in Figure 22 for M≥6.5 and M≥8 events in the branch-averaged model.  The M≥6.5 participation rates are a pretty good proxy of the hazard posed by each fault, particularly in a relative sense.  The plot for M≥8 reveals which faults participate in these more extreme events, and at what frequency; for example, the Wasatch fault is expected to have one such event every ~1-million years.  Participation rate maps for other thresholds are available in the Electronic Supplements (here for the branch average model).
	The other approach taken here is to aggregate MFD results for the 5,577 fault subsections back onto the 1017 parent fault sections, which also aids in making meaningful comparisons to previous models. These participation MFDs, as well as nucleation MFDs and incremental and cumulative versions of each, are included for each parent fault section in the Electronic Supplements (here for the branch-averaged model).  For example, the participation MFD for the Wasatch (Salt Lake City, north) fault section (available here) can be used to confirm the ~1-million-year recurrence interval for M≥8 events, plus the range of values implied by epistemic uncertainties.  Such plots are also available for the special faults listed in Table 5 (here for branch average).  
[bookmark: _Toc223574860]
[bookmark: _Toc127506066]Hazard Map and Sensitivities

	Figure 23a shows a map of the peak ground acceleration (PGA) that has a 2% chance of being exceeded in 50-years, abbreviated as 2in50 hereafter, and note that we may refer to these as "hazard maps" even though they really represent a ground motion at a particular hazard level.  The WUS hazard calculations presented in this section utilize the Abrahamson et al. (2014) GMM with default site parameters (e.g., Vs30=760 m/sec), although test calculations indicate that this choice has no impact on our overall conclusions (WE COULD USE THE SET GMMs USED IN NSHM14/18 IN THE FINAL REPORT IF PEOPLE THINK IT'S WORTH THE COMPUTE TIME).  Hazard comparisons with the NSHM14/18 model are presented and discussed in the "2018 to 2023 Hazard Changes" section below.  The point here is to illustrate sensitivity with respect to WUS model choices.  To this end, Figure 24 shows the influence of each logic tree branch, or more specifically, how the mean hazard map would change if each branch choice was proven correct (and all others zeroed out).  Keep in mind that this ignores branch weights, e.g., the Evans deformation model may imply large changes in hazard, but it also has a relatively low likelihood of being correct (a weight of 2%).  With this caveat in mind, we can see that the deformation models generally have the biggest influence on hazard near faults (Figure 24a).  The next most influential uncertainty is the segmentation model, with the Classic branch implying the greatest hazard (higher frequency of events due to lower maximum magnitudes) and the least segmented branch showing the opposite.  The Supra-seismogenic b-value and Scaling Relationship branches are also influential, at least in some areas.  The Paleoseismic Data Fit appears to be the least influential, which is expect in that it is only relevant where such constraints are incompatible with slip rates (as exemplified above), and such areas are harder to discern in broader-scale maps.
	Figure 24b shows the influence of the various gridded seismicity logic-tree branches.  The rank of overall impact, going from most to least influential, is the Seismicity Smoothing Kernel, the Seismicity Declustering, the regional Total M≥5 Rate and b-value, and . 
	Figure 23b shows the coefficient of variation (COV) implied by all epistemic uncertainties.  The minimum value is 0.031 at a site near San Francisco.  If a Gaussian distribution is applicable, the 95% confidence bounds are about , or about 6% above and below the mean for this site.  The highest COV is 1.8 (at latitude and longitude of 31.5 and -110.2, respectively), which is above the color-scale saturation in Figure 23b (COV≥1 is magenta); the Gaussian approximation obviously fails for such cases given 2in50 PGA cannot be negative.
	The results presented here are for only one hazard metric (2in50 PGA).  Results for 1 Hz spectral acceleration (SA), as well as for both 2% and 10% in 50-year probability levels, are available in the Electronic Supplements (link).  Hazard curves and associated sensitivity analyses are also available for a number of sites (link).  It is important to emphasize that the inferences described here, including the relative influence of various epistemic uncertainties, will certainly vary among different hazard and risk metrics.  The goal here has not been an exhaustive investigation with respect to all potential model uses, but rather to demonstrate that model makes sense with respect to one commonly used metric, especially with respect to branch sensitivities, and to showcase how the Electronic Supplements can be used for further investigations.  It is probably best to assume that each logic-tree branch could be most influential at some location, or for some other hazard or risk metric, meaning it is premature to start trimming branches at this point.
	
[bookmark: _Toc127506067][bookmark: _Ref232156422][bookmark: _Toc233101632]CEUS and Cascadia Results

	Although we endeavor to apply more uniform methodologies in all regions, updates in CEUS and Cascadia have been more modest, which means our level of model interrogation is more limited as well.  The logic tree branches for CEUS gridded seismicity are identical to those in WUS (the bottom half of Figure 2).  For CEUS faults and area sources, however, the logic trees are highly variable, and are therefore not reproduced here. Most are unchanged since NSHM14/18, and are therefore available in Petersen et al. (2014), and uncertainties for the new sources are described by Shumway et al. (2023; link to report here).  The new logic tree for Cascadia is provided by Frankel and Petersen (2023, available here for now).
	Given this logic tree heterogeneity, as well as unspecified correlation structure between nearby sources, we have not been able to conduct the type of branch sensitivity analyses shown in Figure 24.  Doing so would require redefining these sources to have a more common, minimum, necessary, and sufficient set of branches, as mentioned in the "CEUS Fault Sources" section above, or the ability to handle Monte Carlo sampling of logic trees.  Both options will be pursued in the future.
	One thing we can plot are the model implied MFDs.  Those for CEUS are shown in Figure 25a, revealing a total M≥5 event rate is 0.34 per year, up from 0.23 in NSHM14/18, which is consistent with the new model now including aftershocks.  The regional b-value is apparently unchanged, as the rate difference for gridded seismicity is independent of magnitude. As expected, the MFD for CEUS faults (including fault area sources) is relatively unchanged since NSHM14/18, except at lower magnitudes where the new Central Virginia and perhaps Saline River sources are influential.  Note, however, that the incremental MFD for faults in both models exceeds the regional target, as well as the associate upper 95% confidence bound at M≥7.  This implies a significant model over prediction (often referred to as a "bulge"), although one could argue that the observational uncertainties should be greater at higher magnitudes given there are very few observations. 
	The MFDs for Cascadia are plotted in Figure 25b.  This shows no change for the gridded seismicity (intra slab) model; the work by Llenos (2023, link here for now) has not yet been incorporated.  The changes for the fault (subduction interface) are modest and, as shown in the next section below, do not produce ≥10% changes with respect to 2% in 50-year ground motions.
	
[bookmark: _Toc127506068]2018 to 2023 Hazard Changes

	This section documents where and why CONUS hazard has changed relative to NSHM14/18, holding GMMs constant so we can focus on ERF-related differences.  Only branch-averaged comparisons are made, and here we utilize the full logic-tree set of GMMs from NSHM14/18.  Figure 26 shows a map of 2in50 PGA for the new ERF, plus ratio and difference maps relative to NSHM14/18.  The ratio map (Figure 26b) saturates at plus and minus 50%, whereas ratios are up to a factor of 8.4 in some areas (this highest value being near the southern tip of Texas).  However, the higher ratios are generally in lower hazard areas, meaning absolute differences are small as indicated in Figure 26c.  The goal of our analysis has been to understand and explain all changes of more than 10%.
	Figure 27a shows where fault-model changes are influential; this map was generated using the new gridded seismicity model in both the numerator and denominator, which masks fault-related changes in areas dominated by gridded seismicity.  The changes in CEUS are easy to explain; hazard has increased where sources were added (Central Virginia and Saline River in southern Arkansas) and where faults traces were extended (the Meers fault in Oklahoma and the Axial fault in the New Madrid area).  Three sources added in the New Madrid area, Joiner Ridge and Crowley's Ridge (south) & (west), did not increase hazard by more than 10%. See Shumway et al. (2023; link to report here) for further details.
	Explaining fault-related changes in WUS is much more complicated due methodological changes, particularly outside California, and the strong influence of deformation models.  Fortunately, the bottom line is simple: most differences are explained by fault moment rate changes (the addition, removal, or modification of faults or changes in mean slip rates), with just a few areas influenced by other factors.  Parsing this out required some careful analysis as detailed in the Electronic Supplements (see this power point presentation or this briefing video for now; WE WILL IMPROVE ON THIS BEFORE PUBLICATION).  In short, we first made an approximate prediction of hazard changes caused only by fault moment rate changes (involving mapping the moment rates in each fault model to grid cells and computing hazard using grid sources with otherwise identical MFD parameters).  Examining correlation between this and hazard map ratio in Figure 27a allowed us to identify areas that may not be explained by fault moment-rate changes.  Next, we held the deformation model constant (the average used in NSHM14/18) and incrementally stepped through other changes in going from NSHM14/18 to the new model.  This revealed the following with respect to non-California fault sources: 1) we can reproduce the previous classic model within our new fault system solution framework (a verification step); 2) adding alternative segmentation branches generally lowers hazard a bit (by 5 to 15%) because allowing multifault ruptures lowers overall rates; 3) replacing the Wells and Coppersmith (1994) magnitude-length model with the set of magnitude-area relations utilized here also generally lowers hazard by 5 to 15% (because magnitude-length models predict lower maximum magnitudes the predominantly dipping faults outside California).  This analysis, and that conducted by Milner and Field (2023, available here) with respect to hazard changes in the UCERF region, enabled us to identify the few areas that are dominated by something other than moment-rate differences; these cases are labeled in Figure 27a, and see Milner and Field (2023) for more details for California.
	Figure 27b shows areas where hazard changes are dominated by gridded seismicity (computed using the new fault sources in both the numerator and denominator to mask areas dominated by faults).  The causes of these differences, which are described in detail by Llenos (2023, link here for now), are one or more of the following: 1) new earthquakes observed since 2018; 2) the addition of two new declustering algorithms (the Reasenberg method tends to remove fewer aftershocks); and 3) the removal of floor-rate zones in WUS.  Areas dominated by each of these are identified in Figure 27b.  NOTE THAT DIFFERENCES IN SOME AREAS ARE DUE TO NEW INDUCED SEISMICITY EVENTS THAT HAVE NOT YET BEEN PROPERLY REMOVED; THIS WILL BE DONE BEFORE PUBLICATION.
 	Again, the goal here has not been to document and describe changes with respect to a complete set of hazard and risk metrics, but rather to demonstrate an understanding and comfort with those of one commonly used metric (2in50 PGA).  Results of 1-sec spectral acceleration, and for other exceedance probabilities, are provided in the Electric Supplements (here for CONUS PGA, here for CONUS 1s-SA). More extensive comparisons are also available for WUS (under "Hazard Comparisons with NSHM18" on the main landing page).
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[bookmark: _Toc127506070]Issues to Resolve Before Publication

Very Long Ruptures - Our biggest issue is the frequency of very long ruptures shown in Figure 21; we need to discuss the possibility of capping rupture lengths on some of the segmentation branches (e.g., at 600, 800, and 1200 km on the High, Middle, and Low branches, respectively?).  The Wells (2013) data is from an SSA poster (Ned has a copy of the poster and an associated data file).  This change would probably have negligible impact on NSHM hazard maps and consequent design ground motions, but it could have a huge impact on the tail of portfolio loss exceedance curves (e.g., the probability of having widespread damage in both LA and SF).

Slip-rate Under Fits at High Slip Rate Faults - discussed in the "Slip Rates" section above.

Adjust Logic Tree Branch Weights - any final adjustments based on review?  Do any branches fail a laugh test, and is it really worth dealing with them now?

Update seismicity models - We need to remove induced seismicity in newly active areas, and perhaps update the catalog thru 2022 while we are at it (and all the consequent statistical seismology processing)?

[bookmark: _Toc127506071]Improvements Over Previous Models
[bookmark: _Toc233101635]
	The new CONUS ERF presented here embodies a number of significant improvements, including more explicitly modeled faults, updates to other geologic constraints, the addition of two new deformation modeling techniques, a new fault creep model, and consideration of ghost transient (viscoelastic) effects.  We also have new regional seismicity rate and b-value estimates, including uncertainties, which allows us to compare model MFDs with observations (for the first-time outside CA).  Additional declustering algorithms were also added, as well as a revamped set of scaling relationships.
	We have also improved the representation of multi-fault ruptures in WUS, both in terms of allowing more and less fault connectivity than in previous models, and in sweeping over a broader a broader range of total rate models (rather than being constrained to stay as close as possible to the previous model, as in UCERF3).  The inversion methodology has been completely overhauled for efficiency, reproducibility, and the generation of exhaustive web-based reports that include hazard analyses.
	A semi-independent review team evaluated the deformation models (Johnson et al., 2023), an ad hoc group of USGS geologists evaluated the fault system solutions, which led to several model adjustments and future recommendations (Hatem et al., 2023; here for now), and the 20-member participatory review panel participated heavily, indeed, and had a significant impact on the final model (e.g., revised deformation model weights and restricting the rate longer ruptures?) ADD REFERENCE WHEN AVAILABLE.  In short, we believe this new model not only represent best available science, but also a significant improvement with respect to representing epistemic uncertainties. MORE DETAIL ABOVE AND ADD MORE REFERENCES?

[bookmark: _Toc127506072]Model Limitations

	Despite improvements, the new model is a limited representation of the system in terms of embodying assumptions, approximations, and data uncertainties.  For example, we continue to differentiate between “on-fault” and “off-fault” ruptures, whereas nature will surely violate this model distinction. We also acknowledge that our fault model is a simplification of reality, and that future large ruptures will not exactly match it. 
	While we believe the logic-tree branch weights are applicable in general, adjustments may be warranted in certain situations.  For example, further scrutiny may justify a different set of deformation model weights near specific faults, especially given questions about how each model samples the null space (described in the Deformation Models section).  Correlation assumptions may also justify branch weight modifications.  For example, a 20% weight on the Classic and no-segmentation branches seems rational for site-specific hazard (because the actual connectivity of nearby faults may be more or less than implied by the fault model), but the likelihood that either of these branches applies to all fault in a region is more doubtful, so weight adjustments might be appropriate for spatially distributed hazard and risk metrics (e.g., statewide portfolio losses).
	Another presently unresolved issue is the best way to combine sources that have completely different (uncorrelated) logic tree branches.  For example, if Cascadia has X branches, do we combine these with all N Western U.S. branches, yielding NX branches?  Alternatively, should we keep them separate and combine the consequent hazard PDFs, or resort to Monte Carlo sampling, both of which might complicate quantifying the influence of different branches?  Or do we construct philosophically similar sets of branches for each source and assume correlation?   Until we address these questions, full consideration of all epistemic uncertainties will remain a challenge in hazard and risk analyses.
	Each inversion-based fault system solution includes quantitative metrics on how well the final model fits each data constraint. In principle, these misfits could be used to adjust logic tree branch weights a posteriori (e.g., using Bayes theorem with a priori branch weights). This has proven challenging in practice, however, because better fits do not always reflect a better model.  For example, a target MFD with higher b-value appears superior, but this is only because it has more smaller earthquakes with which to fit noisy slip-rate fluctuations.  That said, several branches were assigned uniform weights because we lacked a good basis for doing otherwise.  Further scrutiny of the model will presumably lead to some desirable adjustments.

[bookmark: _Toc233101636][bookmark: _Toc127506073]Future Improvements

	As mentioned in the introduction, we plan to add time dependent components as soon as possible (e.g., elastic rebound, spatiotemporal clustering, induced seismicity, and swarms).  But in terms of improving the time independent model presented here, effort is clearly warranted with respect to improving the deformation models, as fault slip rates continue to be one of the most influential factors on seismic hazard.  Given the outlier problem with respect to the five models applied here, attention should be given to not only the viability of different modeling approaches, but also with respect to how each maps out any solution null space; in fact, it would be ideal if each approach provided a suite of viable models that represents both a systematic traversal of null spaces and a basis for determining slip-rate covariance.  We also want to improve the reliability of the off-fault deformation estimates from these models, both in terms of total moment rate and the spatial distribution of off-fault earthquakes (on which we have made no progress since UCERF3).
	In developing this ERF, we were constantly asking whether a decision or model option is consequential with respect to hazard or risk estimates.  While we were sometimes able to answer this question with respect to more traditional hazard metrics, the extent to which we can operationalize this capability, and with a broader set of risk metrics, would increase the rate at which we can provide even more useful models.  For example, we still don't know the consequences of having exceptionally long (e.g., ≥600 km) ruptures with respect to statewide losses in California, nor the influence of the various logic tree branches on this risk metric.  Again, we need to operationalize processing with respect to a necessary and sufficient set of hazard and risk metrics.
	We also want to explore applicability of fault system solutions in other areas (New Madrid and Alaska faults, and the Cascadia and the Aleutian subduction zones), in part to enable computing implied attributes, such as subduction slip rates, and for adding time dependencies.  Another high priority is better quantification of epistemic uncertainties associated with the gridded seismicity model, especially given the limited sample of instrumental and historical earthquakes; we need better procedures for quantifying the implications of this sampling error.  We also need to determine the value of developing site-specific models for the probability of missed events at paleoseismic trenches (we are still using generic models).
	Longer term, multi-cycle physics-based simulators (e.g., Tullis (2012) and references therein) are perhaps out best opportunity for addressing many enduring ERF-related questions, including the propensity of multi-fault ruptures, earthquake scaling, the influence of creep, the shape of MFDs on faults, elastic rebound predictability, and spatiotemporal clustering details at larger magnitudes (e.g., Field, 2019).  A more comprehensive list of research priorities can be found in the ERF section of the annual external grants announcement of the USGS Earthquake Hazards Program.
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Figure 1. The main model components in our Earthquake Rupture Forecast framework.
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Figure 2.  Logic tree branches for the Western U.S. Branch weights are list in parentheses.
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Figure 3.  The various geographic regions utilized in this study as labeled (ADD LABELS TO GREEN REGIONS). 
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Figure 4. (a) Western U.S. fault model with orange lines indicating newly added faults (get version where blue and orange lines have same width and where faults that were removed since 2018 are not shown). (b) Geologic slip rate constraints, where green circles are locations with geologic studies and lighter circles are where a generic categorical range of values is assigned (based on the USGS Quaternary Fault and Fold Database - QFFD).  See Hatem et al. (2022a) for details.
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Figure 5.  Wastach fault segment boundaries based on WGUEP (2016). Available from this link.  IMPROVE THIS BEFORE PUBLICATION.
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Figure 6. Central and Eastern U.S. faults and fault zones. (a) The previous model (from CEUS-SSCn, 2012) versus (b) the new model by Jobe et al. (2022). (c) Zoomed in view near New Madrid, MO for the previous model (c) and new model (d).  (b) and (d) also show the locations of geologic studies (blue circles).  See Jobe et al. (2022) for details.
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Figure 7. (a) Geologic deformation model slip rates and (b) ratio of slip rates for the four other deformation models relative to geologic slip rates.  Adapted from Pollitz et al. (2022). Their figures 1 and 7 literally screen shot and pasted here for now.


Figure 7 continued.
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Figure 8. Deformation model slip rate scatter plots.  (a) Original branch-averaged slip rate versus the median among all models for each fault section (based on the weights recommended by the deformation model review panel, Table 2).  (b) the slip rate from each deformation model (color coded as labeled) versus the median. (c) Branch-averaged slip rates, based on final revised weights (Table 2), versus the median. 
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Figure 9. Wester U.S. fault system interconnectivity.  Colors represent sets of faults that are connected by less than 15 km (measured in 3D).  There may not be any single rupture that connects all such sections, but rather, chains of ruptures connect the sections. Only the 10 largest clusters are plotted with bold colors; smaller clusters are plotted in random saturated colors and fully isolated faults are plotted in black.
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Figure 10. The magnitude–area (top) and slip–length (bottom) relationships utilized here, plus one (Hanks and Bakun, 2008; green) used previously in UCERF3, but now excluded due to the large, implied slips for long ruptures (see Shaw (2023) for full description). These curves assume a down-dip width of 11 km.
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Figure 11.  The solid lines represent the distance-dependent segmentation models (relative passthrough rates).  The red, purple, and blue lines correspond to the Low, Middle, and High segmentation branch options, respectively.  The dashed line depicts segmentation used in UCERF3. See Table 4 for details. 
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Figure 12. Map of Western U.S. fault zones (where a clear predominant surface is lacking).  From Hatem et al. (2022a).
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Figure 13. Branch-averaged M≥5 seismicity rate in 0.1 by 0.1 degreed bins for the WUS and CEUS collection regions (defined in Figure 3).
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Figure 14. M≥5 seismicity rates for each Declustering and Smoothing Kernel branch combination normalized by the branch-averaged rates shown in Figure 13.
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Figure 15. Model and target MFDs for the three analysis regions in WUS: (a) UCERF3 (Greater California), (b) Pacific Northwest, and (c) Intermountain West.  Blue and red curves are for the NSHM14/18 and new model, respectively. Solid curves for the complete model, dashed curves are for faults, and dotted is for gridded seismicity.  The red shaded areas represent various epistemic uncertainty percentiles, as labeled, for the new model. The purple line and shaded region represent the observed target and 95% confidence intervals, respectively, for each region (extrapolated from M 5 with no taper).
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Figure 16.  Average WUS fault system solution MFDs for (a) b-value branches and (b) segmentation branches.  The full logic-tree branch average is shown with the black line.
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Figure 17.  Branch-averaged solution slip rate for each subsection versus the average target value (the average deformation model slip rate including creep reductions).



(a) Branch Averaged	(a) Under Fit Branch
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Figure 18.  WUS paleoseismic data fits (solution versus target rate) for (a) the branch-averaged model, (b) the Under Fit branch, (c) the Even Fit branch, and (d) the Over Fit branch. Horizontal bars indicate 95% confidence bounds on the target values (with tick marks also indicating 68% bounds).
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Figure 19.  Average M≥6 fault participation rates for the two extreme Supra-seismogenic b-value branches (0.0 in (a) versus 1.0 in (b)), both normalized with respect to values from the full logic tree.  This demonstrates that this constraint is systematically dialing over a range of total rates.


(a) Branch-averaged model	(b) No segmentation (None)
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(c) Low segmentation	(d) Middle segmentation
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(e) High segmentation	(f) Classic segmentation
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Figure 20. Fractional passthrough rates at each WUS fault connection (small circles) as a function of distance for the (a) branch-averaged model, (b) no segmentation (None), (c) Low segmentation, (d) Middle segmentation, (e) High segmentation, and (f) Classic segmentation.  Solid lines represent the upper bounds for the Low, Middle, and High segmentation branches.  Large circles and squares represent average and median values, respectively, for 1 km distance bins.
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Figure 21.  Cumulative distribution of rupture lengths for the full model (thick black line) and for the different segmentation branches (colored lines as labeled), normalized by total rate. Gray histograms represent the global data compilation of Wells (2013), also normalized. (a) is for WUS and (b) excludes ruptures in the UCERF (Greater California) region.
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Figure 22. WUS branch-averaged fault participation rates for M≥6.5 (a) and M≥8.0 (b) earthquakes.  Gray color indicates a rate of zero.
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Figure 23. (a) The PGA that has a 2% chance of exceedance in 50 years according to the new WUS branch-averaged model (computed using the Abrahamson et al. (2014) GMM with Vs30=760).  (b) the coefficient of variation (COV) implied by the full logic tree.
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Figure 24.  The percent change for the map in Figure 23a ( the PGA that has a 2% chance of being exceeded in 50 years) were each branch choice found to be correct (others branch options removed).  
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Figure 25. Model MFDs for the CEUS (a) and the Cascadia subduction zone (b). Blue and red curves are for the NSHM14/18 and new model, respectively. Solid curves are for the complete model, dashed curves are for faults, and dotted is for gridded seismicity (or intra slab seismicity in (b), where the blue dotted line is hidden behind the red dotted line).  The purple line and shaded region in (a) represent the observed target and 95% confidence intervals, respectively, CEUS (extrapolated from M 5 with no taper).
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Figure 26.  (a) The PGA that has a 2% chance of exceedance in 50 years according to the new CONUS branch-averaged model (and the set of GMMs used in NSHM14/18 with Vs30=760). (b) The percent change and difference (d) relative to that of the NSHM14/18 ERF.  All sources are included, including Cascadia. FIX LABEL TO SAY LOG10 IN (a)
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Figure 27.  The 2% in 50-year PGA percent changes, as in Figure 26b, but separated out by the contribution from faults (a) and from gridded seismicity (b), constructed by using the new gridded seismicity in both the numerator and denominator in (a), and doing likewise with respect to the new fault sources in (b).  In (a), and outside California, all differences are caused by fault moment rate changes (addition, removal, or extension of faults or a change in mean slip rate), except where labeled differently.  

This draft manuscript is distributed solely for purposes of scientific peer review. Its content is deliberative and predecisional, so it must not be disclosed or released by reviewers. Because the manuscript has not yet been approved for publication by the U.S. Geological Survey (USGS), it does not represent any official USGS finding or policy.
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Description

Slip Rate Matching: vs is the subsection slip rate and Dy is the slip
on the 5™ subsection in the 7" event, averaged over multiple
occurrences of the rupture and as measured at mid-seismogenic
depth.

Paleoseismic Event Rate Matching: fs”de" is a paleoseismically
inferred event rate estimate, G, specifies whether the /" rupture
utilizes the s™ subsection (0 or 1), and Prp“"” is the probability that
the 7" rupture would be seen in a paleoseismic trench.

Fault Section Smoothness Constraint: This forces the total
participation rate, Ry, to vary smoothly along a parent fault section,
where the s-1 and s+1 subsections are adjacent to the s”
subsection.

A Priori Constraint: This constrains a set of ruptures (R) to share a
collective target rate (f @Priort).

Regional MFD Constraint: This enables forcing a group (g) of
ruptures (e.g., those in a geographic region or those on an
interconnected set of faults) to have a specified total MFD, such as
Gutenberg-Richter. RJ represents the nucleation rate for the m™
magnitude bin for the g” rupture group. Matrix M} indicates
whether the 7/ rupture is both part of the g” group and falls in the
m™ magnitude bin (0 or 1).

Fault Section MFD Constraint: This enables forcing subsections
to have a specific nucleation MFDs. R{" is the nucleation rate for
the m™ magnitude bin on the 5™ subsection. Matrix M contains
the product of whether the 7" rupture falls in the m™ magnitude bin
(0 or 1) multiplied by the fraction of that rupture that nucleates on
the s™ subsection.

Basic Segmentation Constraint: This constrains the maximum co-
rupture rate (Ry¢) between two subsections (s and $) to be less than
or equal to a specified fraction (Fs¢) of lowest participation rate on
either subsection (Rg and Ry).

Distance-Dependent Segmentation Constraint: The maximum
passthrough rate between neighboring fault subsections (Rg¢) must
be less than a fraction of lowest participation rate on either
subsection (R, and R¢), where the fraction decreases exponentially
with jump distance (d¢) according to decay-rate parameter d,, and
offset parameter S (the latter relaxes the penalty up to this
distance).





